提出了一个决定溢料口的快速算法.在这个算法中,采用已被广泛使用的有限元模型,假设树脂首先注满离注射口近的节点,再根据溢料口的位置安排要求避免干点的出现这一点来决定其位置.本方法的关键是如何计算复杂模型中的两点之间沿形面的距离,采用一种新的方法来计算沿复杂表面的两点之间的距离.计算的实例表明该方法确定溢料口位置的快速及有效.
参考文献
[1] | Mathur R, Fink B K, Advani S G. Use of genetic algorithm to optimize gate and vent locations for the resin transfer molding process [J]. Polymer Composite, 1999, 20(2): 167-178. |
[2] | Lee L J, Young W B, Lee R J. Molding filling and curing modeling of RTM and SRIM processes [J]. Composite Structures, 1994, 27: 109-120. |
[3] | Liu B C, Bickerton S, Advani S G. Modeling and simulation of resin transfer molding (RTM)--gate control, venting and dry spot prediction [J]. Composites: Part A, 1996, 27A(2): 135-141. |
[4] | Frederick R P Jr. Flow simulation of the resin transfer molding process [J]. Polymer Composites, 1997, 18(4): 460-476. |
[5] | Young W B. Gate location optimization in liquid composite molding using genetic algorithms [J]. Journal of Composites Materials, 1994, 28(12): 1099-1113. |
[6] | Boccard A, Lee W I, Springer G S. Model for determining the vent locations and the fill time of resin transfer molds [J]. Journal of Composites Materials, 1995, 29(3): 306-333. |
[7] | 江顺亮.基于有限元网格的复杂表面两点之间最短距离求解法 [J].南昌大学学报(工科版),2001,23(3): 69-73. |
[8] | 江顺亮.RTM加工工艺充模过程的计算机模拟 [J].复合材料学报,2002,19(2):13-17. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%