通过定义广义应力,提出了一个改进的刚度矩阵,以克服固体壳元的厚度自锁问题,并能保证沿复合材料层合结构厚度方向上的连续应力分布;将应力插值函数分为低阶和高阶两部分,建议了一个新的非线性变分泛函,推导了一个用于几何非线性分析的九节点固体壳单元,该单元的计算精度和效率基本上与九节点减缩积分单元相当,与同类型其他单元相比,该单元显著提高了计算效率.
参考文献
[1] | Kim Y H, Lee S W. A solid element formulation for large deflection analysis of composite shell structures [J]. Computers & Structures,1988,30:269-274. |
[2] | Klinkel S,Gruttmann F, Wagner W.A continuum based three- dimensional shell element for laminated structures [J]. Comput & Struct,1999,71:43-62. |
[3] | Betsch P,Gruttmann F, Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains [J].Comput Methods Appl Mech Engrg, 1996,130:57-79. |
[4] | Betch P,Stein E.An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element [J]. Commun Numer Methods Engrg,1995,11:899-909. |
[5] | Park H C,Cho C,Lee S W.An efficient assumed strain element model with 6 dof per node for geometrically nonlinear shells [J]. Inter J Numer Methods Engrg, 1995,38:4101-4122. |
[6] | Hauptmann R,Schweizerhof K.A systematic development of solid-shell element formulations for linear and non-linear analysis employing only displacement degrees of freedom [J].Inter J Numer Methods Engrg, 1988,42:49-69. |
[7] | Sze K Y, Yao L Q. A hybrid-stress ANS solid-shell element and its generalization to smart structure modeling,part Ⅰ: Solid-shell element formulation; part Ⅱ: Smart structure modeling [J]. Inter J Numer Methods Engrg, 2000,48:545-582. |
[8] | Zheng S J, Chen W J.Geometrically nonlinear generalized hybrid element and refined element method for non-conforming modes [J]. Acta Mechanica Sinica, 1995,11(2):178-185. |
[9] | Gruttmann F,Klinkel S, Wagner W. A finite rotation shell theory with application to composite structures [J]. Rev Eur Elements Finis, 1995,4:597-631. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%