欢迎登录材料期刊网

材料期刊网

高级检索

纤维桥连效应对纤维加强基体复合材料疲劳过程中的裂纹增长具有重要影响.由于纤维桥连疲劳裂纹相关的数据呈现出一定的统计特性,因此本文建立了纤维桥连疲劳裂纹扩展的首次穿越扩散过程随机模型.首先基于Paris定律,考虑到材料的非均匀性和外载的随机性,将纤维桥连疲劳裂纹增长过程假定为扩散的Markov过程,且应用随机平均法,建立了转移概率密度满足的FPK方程;其次建立了首次穿越纤维桥连疲劳裂纹扩展时间的条件矩应满足的微分方程,并且解得第k阶条件矩.从数值结果得出,建立的随机模型对于模拟纤维桥连是比较有效的.

参考文献

[1] Cox B N. Scaling relations for bridged cracks [J]. Mech of Mater, 1993, 15(1):87-98.
[2] Wang P C, Yang J M. Simulation of fatigue cracking and life distribution of SCS-6 fiber-reinforced orthorhombic titanium aluminide composites [J]. Materials Science and Engineering,1997, 222(2):101-108.
[3] MeMeeking R M, Evans A G. Matrix fatigue cracking in fiber composites [J]. MechMate, 1990, 9(1): 217-227.
[4] Greaves Ⅰ, Yates J R. The growth of freely initiating fatigue cracks in an unnotched SiC/titanium composite [ J ].International Journal of Fatigue, 1997, 19(2): 151- 159.
[5] John R, Stibich P R, Johnson D A. et al, Bridging fibre stress distribution during fatigue crack growth in [0] 4 SVS-6/Timetal 21S [J]. Scripta Metallurgica et Materiala, 1995, 33(1): 75- 80.
[6] Majumdar B S, Newaz G M. Constituent damage mechanisms in metal matrix composites under fatigue loading and their effects on fatigue life [J]. Materials Science and Engineering,1995, 200(1-2):114-129.
[7] Begley M R, McMeeking R M. Numerical analysis of fibre bridging and fatigue crack growth in metal matrix composite materials [J]. Materials Science and Engineering, 1995, 200(1-2): 12-20.
[8] Connnell S J, Zok F W. Measurement of the cyclic bridging law in a titanium matrix composite and its application to simulating crack growth [J]. Acta Materialia, 1997, 45(12): 5203-5211.
[9] Cox B N, Rose L R F. Time-or cycle-dependent crack bridging [J]. Mechanics of Materials, 1994, 19(1):39-57.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%