考察了熔融挤出后施加的牵伸比和增容剂对聚丙烯(PP)/热致液晶聚合物(TLCP)原位复合材料中TLCP分散相形貌的影响.结果表明,复合材料中的TLCP相随着牵伸比的增大逐渐形成良好的微纤结构,TLCP微纤的长径比随牵伸比增大而增大;当体系中加入增容剂PP-g-MAH后,体系中TLCP在较小的牵伸速率下即可形成长径比很大的微纤结构.将上述所得原位复合材料与玻纤在200℃(低于TLCP熔融温度)下熔融挤出制得玻纤和液晶聚合物微纤混杂增强的材料.实验证明,在此加工温度下液晶聚合物形态得到较好保持,注射样品中不存在原位复合材料中典型的"皮-芯"形貌.同时,增容剂PP-g-MAH还明显改善了玻纤与基体之间的界面粘结.
参考文献
[1] | Baird D G, Wilkes G L. Sandwich injection-molding of thermotropic copolyesters and filled polyester [J]. Polym Eng Sci, 1983, 23 (11): 632-636. |
[2] | Joseph E G, Wilkes G L, Baird D G. Effect of flow history on the morphology of thermotropic liquid crystalline copolyesters [J]. Polym Eng Sci, 1985,25 (7): 377-388. |
[3] | Bafna S S, DeSouza J P, Sun T, et al. Mechanical properties of in-situ composites based on partially miscible blends of glass-filled polyetherimide and liquid crystalline polymers [J]. Polym Eng Sci, 1993, 33 (13): 808-818. |
[4] | Kulichikhin V G, Shumskii V F, Semakov A V. Rheological and Relaxation Behavior of Filled LC-Thermoplastics and their Blends [A].In: Acierno D ,Collyer A A,eds.Rheology and Processing of Liquid Crystal Polymers[C].London: Chapman & Hall, 1996. |
[5] | Tjong S C, Meng Y Z. Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester [J]. Polymer, 1999, 40 (5): 1109-1117. |
[6] | Pisharath S, Wong S C. Processability of LCP-Nylon-Glass hybrid composites [J]. Polym Compos, 2003, 24 (1): 109-118. |
[7] | He J S, Zhang H Z, Wang Y L. In-situ hybrid composites containing reinforcements at two orders of magnitude [J]. Polymer, 1997, 38 (16): 4279-4283. |
[8] | He J S, Wang Y L, Zhang H Z. In situ hybrid composites of thermoplastic poly(ether ether ketone), poly(ether sulfone) and polycarbonate [J].Compos Sci Technol, 2000, 60 (10): 1919-1930. |
[9] | Huang J,Baird D G.Injection molding of polypropylene reinforced with thermotropic liquid crystalline polymer micro-fibrils Ⅲ: Combination of glass and TLCP [J]. J Inject Mold Technol, 2002, 6 (3): 187-193. |
[10] | Thangamathesvaran P M, Hu X, Tam K C, et al. In situ composites: Effect of elongational flow velocity on thermotropic liquid crystalline copolyester fibrillation in thermoplastic/TLCP systems [J]. Compos Sci Technol, 2001, 61 (7): 941-947. |
[11] | Gao P, Mackley M R, Zhao D F. The deformation and break-up of thermotropic co-polyester droplets in a molten polypropylene matrix subjecting to oscillatory simple shear and entry flow [J]. J Non-Newton Fluid Mech, 1999, 80 (2-3): 199-216. |
[12] | He J S, Bu W S, Zhang H Z. Factors influencing the microstructure formation in polyblends containing liquid crystalline polymers [J]. Polym Eng Sci, 1995, 35 (21): 1695-1704. |
[13] | Tjong S C, Li R K Y, Meng Y Z. Rheology and impact characteristics of compatibilized polypropylene-liquid crystalline polymer composites [J]. J Appl Polym Sci, 1998, 67 (3): 521-530. |
[14] | Miller M M, Cowie J M G, Brydon D L, et al. Fibres from polypropylene and liquid crystal polymer blends using compatibilizing agents.3. Assessment of graft side chain liquid crystalline compatibilizers based upon acrylic acid-functionalized polypropylene[J]. Polymer, 1997,38(7): 1565-1568. |
[15] | Wanno B, Samran J, Buelak-Limcharoen S. Effect of melt viscosity of polypropylene on fibrillation of thermotropic liquid crystalline polymer in in situ composite film[J]. Rheol Acta, 2000, 39 (3): 311-319. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%