欢迎登录材料期刊网

材料期刊网

高级检索

考察了熔融挤出后施加的牵伸比和增容剂对聚丙烯(PP)/热致液晶聚合物(TLCP)原位复合材料中TLCP分散相形貌的影响.结果表明,复合材料中的TLCP相随着牵伸比的增大逐渐形成良好的微纤结构,TLCP微纤的长径比随牵伸比增大而增大;当体系中加入增容剂PP-g-MAH后,体系中TLCP在较小的牵伸速率下即可形成长径比很大的微纤结构.将上述所得原位复合材料与玻纤在200℃(低于TLCP熔融温度)下熔融挤出制得玻纤和液晶聚合物微纤混杂增强的材料.实验证明,在此加工温度下液晶聚合物形态得到较好保持,注射样品中不存在原位复合材料中典型的"皮-芯"形貌.同时,增容剂PP-g-MAH还明显改善了玻纤与基体之间的界面粘结.

参考文献

[1] Baird D G, Wilkes G L. Sandwich injection-molding of thermotropic copolyesters and filled polyester [J]. Polym Eng Sci, 1983, 23 (11): 632-636.
[2] Joseph E G, Wilkes G L, Baird D G. Effect of flow history on the morphology of thermotropic liquid crystalline copolyesters [J]. Polym Eng Sci, 1985,25 (7): 377-388.
[3] Bafna S S, DeSouza J P, Sun T, et al. Mechanical properties of in-situ composites based on partially miscible blends of glass-filled polyetherimide and liquid crystalline polymers [J]. Polym Eng Sci, 1993, 33 (13): 808-818.
[4] Kulichikhin V G, Shumskii V F, Semakov A V. Rheological and Relaxation Behavior of Filled LC-Thermoplastics and their Blends [A].In: Acierno D ,Collyer A A,eds.Rheology and Processing of Liquid Crystal Polymers[C].London: Chapman & Hall, 1996.
[5] Tjong S C, Meng Y Z. Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester [J]. Polymer, 1999, 40 (5): 1109-1117.
[6] Pisharath S, Wong S C. Processability of LCP-Nylon-Glass hybrid composites [J]. Polym Compos, 2003, 24 (1): 109-118.
[7] He J S, Zhang H Z, Wang Y L. In-situ hybrid composites containing reinforcements at two orders of magnitude [J]. Polymer, 1997, 38 (16): 4279-4283.
[8] He J S, Wang Y L, Zhang H Z. In situ hybrid composites of thermoplastic poly(ether ether ketone), poly(ether sulfone) and polycarbonate [J].Compos Sci Technol, 2000, 60 (10): 1919-1930.
[9] Huang J,Baird D G.Injection molding of polypropylene reinforced with thermotropic liquid crystalline polymer micro-fibrils Ⅲ: Combination of glass and TLCP [J]. J Inject Mold Technol, 2002, 6 (3): 187-193.
[10] Thangamathesvaran P M, Hu X, Tam K C, et al. In situ composites: Effect of elongational flow velocity on thermotropic liquid crystalline copolyester fibrillation in thermoplastic/TLCP systems [J]. Compos Sci Technol, 2001, 61 (7): 941-947.
[11] Gao P, Mackley M R, Zhao D F. The deformation and break-up of thermotropic co-polyester droplets in a molten polypropylene matrix subjecting to oscillatory simple shear and entry flow [J]. J Non-Newton Fluid Mech, 1999, 80 (2-3): 199-216.
[12] He J S, Bu W S, Zhang H Z. Factors influencing the microstructure formation in polyblends containing liquid crystalline polymers [J]. Polym Eng Sci, 1995, 35 (21): 1695-1704.
[13] Tjong S C, Li R K Y, Meng Y Z. Rheology and impact characteristics of compatibilized polypropylene-liquid crystalline polymer composites [J]. J Appl Polym Sci, 1998, 67 (3): 521-530.
[14] Miller M M, Cowie J M G, Brydon D L, et al. Fibres from polypropylene and liquid crystal polymer blends using compatibilizing agents.3. Assessment of graft side chain liquid crystalline compatibilizers based upon acrylic acid-functionalized polypropylene[J]. Polymer, 1997,38(7): 1565-1568.
[15] Wanno B, Samran J, Buelak-Limcharoen S. Effect of melt viscosity of polypropylene on fibrillation of thermotropic liquid crystalline polymer in in situ composite film[J]. Rheol Acta, 2000, 39 (3): 311-319.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%