欢迎登录材料期刊网

材料期刊网

高级检索

研究了SiCP/Ni纳米复合材料的超塑性.SiCP/Ni采用脉冲电沉积方法获得.拉伸实验温度为410℃和450℃,应变速率范围为8.3×10-4~5×10-2s-1.温度为450℃、应变速率为1.67×10-2s-1时,获得的最大延伸率为836%.采用SEM、TEM分析了沉积态材料的表面形貌、断口形貌及变形后的组织,并对变形机理进行了探讨.通过SiC颗粒稳定基体组织有利于实现材料的超塑性,低空洞体积分数有助于获得大延伸率.晶粒长大到微米尺度时,变形机制主要是位错协调的晶界滑移和位错滑移塑性.

参考文献

[1] Mayo M J. High and low temperature superplasticity in nanocrystalline materials [J]. Nanostruct Mater, 1997, 9( 1-8): 717-726.
[2] Mishra R S, McFadden S X, Valiev R Z, et al. Deformation mechanisms and tensile superplasticity in nanocrystalline ma terials[J]. JOM, 1999, 51:37-44.
[3] 许晓静,戈晓岚.SiC晶须增强铝基复合材料超塑性[J].复合材料学报,2003,20(3):127-131.Xu X J, Ge X L. Superplasticity of SiC whisker aluminum matrix composite [ J]. Acta Materiae Composite Sinica,2003, 20(3): 127-131.
[4] 许晓静,戈晓岚.SiCw/Zn-22Al复合材料超塑性[J].复合材料学报,2003,20(4):1-4.Xu X J, Ge X L. Superplasticity of a SiCw/Zn-22Al composite [J]. Acta Materiae Composite Sinica, 2003, 20(4) : 1-4.
[5] 李泽琳,唐才荣,李华伦,等.喷雾电沉积法制造的铝基复合材料的超塑性[J].复合材料学报,1996,13(4):25-29.Li Z L, Tang C R, Li H L, et al. Superplasticity of aluminum matrix composite fabricated by spray atomization and codeposition [J]. Acta Materiae Composite Sinica , 1996,13(4): 25-29.
[6] Mukherjee A K, Bird J E, Dorn J E. Experimental correlations for high temperature creep [J]. Trans ASM, 1969,62: 155-179.
[7] Mcfadden S X, Mishra R S, Valiev R Z, et al. Low-tempera ture superplasticity in nanostructured nickel and metal alloys [J]. Nature, 1999, 398: 684-686.
[8] Mcfadden S X, Zhilyaev A P, Mishra R S, et al. Observation of low-temperature superplasticity in electrodeposited ultra fine grainednickel[J]. MaterLett, 2000, 45: 345-349.
[9] Shaw L L. Processing nanostructured materials: An overview [J]. JOM, 2000, 52: 41-45.
[10] Beneaa L, Bonora P L, Borello A, et al. Preparation and investigation of nanostructured SiC-nickel layers by electrodeposition [J]. SolidState Ionics, 2002, 151: 89-95.
[11] Lei W N, Zhu D, Qu N S. Synthesis of nanocrystalline nickel in pulse deposition [J]. Trans IMF, 2002, 80(6): 205209.
[12] Xiao C H, Mirshams R A, Whang S H, et al. Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel[J]. Mater Sci Eng, 2001, A301: 35-43.
[13] Zimmerman A F, Palumbo G, Aust K T, et al. Mechanical properties of nickel silicon carbide nanocomposites [J]. Mater Sci Eng, 2002, A328: 137-146.
[14] Chan K C, Wang C L, Zhang K F. Superplastic deformation behavior of the electrocodeposited Ni/SiC composite [J].Scripta Mater, 2004, 51: 605-609.
[15] Cullity B D, Stock S R. Elements of X ray Diffraction [M].Third edition. Prentice Hall, 2001. 167-171.
[16] McFadden S X, Sergueeva A V, Kruml T, et al. Superplasticity in nanocrystalline Ni3Al and Ti alloys [A]. In: Farkas D, Kung H, Mayo M, eds. Structure and Mechanical Prop erties of Nanophase Materials-Theory and Computer Simulation vs Experiment [C]. Boston: Materials Research Society,2001. B1. 3. 1-B1. 3. 6.
[17] Mcfadden S X, Sergueeva A V, Mukherjee A K. Tensile superplasticity in nanomaterials: Some observations and reflections [J]. Material Science Forum, 2001, 357-359: 499-506.
[18] Higashi K, Nieh T G, Wadsworth J. Effect of temperature on the mechanical properties of mechanically-alloyed materials at high strain rates [J]. Acta Metall Mater, 1995, 43: 3275-3282.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%