利用湿化学法制备先驱体-煅烧合成制备钒酸锆-ZrV2O7的新技术,采用粉末冶金方法,研究了ZrV2O7与金属Al两类不同材料的复合行为及其热膨胀特性.X射线衍射结果表明:利用上述技术合成的ZrV2O7纯度高,杂质含量极少.采用合成的ZrV2O7粉体与金属Al粉末混合,按不同成形-烧结工艺制备ZrV2O7与金属Al的复合材料试样,经扫描电子显微组织分析、微区电子探针能谱成分分析及X射线衍射分析发现,在一定烧结温度范围内,ZrV2O7与金属Al(无论是固态还是熔融态)均表现出了良好的烧结性与浸渍性,但在烧结温度下在ZrV2O7与金属Al之间存在Al对Zr的置换反应,且随温度升高而加剧.用热膨胀仪分别对合成的ZrV2O7及其与金属Al烧结而成的复合材料进行热膨胀特性测试,结果表明:ZrV2O7在400~680 K的温度区间具有很强的负膨胀特性;其与金属Al的复合材料虽然仍具有正的热膨胀特性,但其膨胀率较金属Al低得多.
参考文献
[1] | 聂存珠,赵乃勤.金属基电子封装复合材料的研究进展[J].金属热处理学报,2003,28(6):1-5.NIE Cunzhu, ZHAO Naiqin. Review of metal matrix composite materials for electronic packaging [J]. Transactions of Metal Heat Treatment, 2003, 28(6): 1-5. |
[2] | Ryan J McGlen, Jachuck R, Lin S, etal. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8- 9): 1143-1156. |
[3] | 张佐光.功能复合材料[M].北京:化学工业出版社,2004.172-193. |
[4] | 胡明.金属基复合材料的热膨胀[J].佳木斯大学学报(自然科学报),2004,22(1):94-100.HU Ming. Thermal expansion of metal matrix composites[J]. J J iamusil University (Natural Science Edition),2004, 22(1): 94-100. |
[5] | Arpon R, Molina J M, Saravanan R, et al. Thermal expan sion behaviour of aluminium/SiC composites with bimodal particle distribution [J]. Acta Materialia, 2003, 51:3145-3156. |
[6] | 王涛.铝渗碳化硅电子封装材料的热物理性能[D].西安:西北工业大学,2003.1-15. |
[7] | 刘龙飞,戴兰宏,凌中,等.冲击剪切载荷下SiCp/6151Al复合材料变形局部化及增强颗粒尺寸效应[J].复合材料学报,2002,19(4):51-55.LIU Longfei, DAI Lanhong, LING Zhong, et al. Localized deformation and particle size effect in particle-reinforced SiCp/6151Al composites under impulsive shear loadings[J]. Acta Materiae Compositae Sinica , 2002, 19(4): 51-55. |
[8] | 李凤平.金属基复合材料的发展与研究现状[J].复合材料学报,2004,21(1):48-53.LI Fengping. Development and current study of metal matrix composite material [J]. Acta Materiae Compositae Sinica,2004, 21(1): 48-53. |
[9] | Yoshida K, Morigami H. Thermal properties of diamond/copper composite material [J]. Microelectronics Reliability, 2004, 44(2): 303-308. |
[10] | Yilmaz S, Dunand D C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu-60% (volume fraction) ZrW2O8 composite [J]. Composites Science and Technology, 2004, 64(12) : 1895-1898. |
[11] | Balch D K, Dunand D C. Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations [J]. Metall and Mater Trans, 2004, 35A(3): 1159-1162. |
[12] | Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3 to 1050K in ZrW2O8 [J]. Science,1996, 272(5258): 90-92. |
[13] | Korthuis V, Khosrovani N, Sleight A W. Negative thermal expansion and phase transitions in a ZrV2-xPxO7 series [J].Chem Mater, 1995, 7: 412-417. |
[14] | Turquat C, Muller C, Nigrell E, et al. Structural investigation of temperature-induced phase transitions in HfV2O7[J]. Eur Phys J AP, 2000, 10(4): 15-17. |
[15] | Withers R L, Tabira Y, Jso Evans, et al. A new threedimensional incommensurately modulated cubic phase (in ZrP2O7) and its symmetry characterization via temperaturedependent electron diffraction [J]. J Solid State Chemistry,2001, 157(1): 186-192. |
[16] | Xing Xianran, Zhu Zhanqi. Zero-thermal expansion and heat capacity of zirconium pyrovanadate doped with zirconia vanadium (Ⅴ) oxide [J]. Rare Metals , 2001, 20(1): 1-4. |
[17] | Weller Mark T, Henry Paul F, Chick C. An analysis of the thermal motion in the negative thermal expansion material Sc2 (WO4)3 using isotopes in neutron diffraction [J]. J Phys Chem B, 2000, 104(51): 12224-12229. |
[18] | Tyagi T A, Achary S N, Mathews M D J. Phase transition and negative thermal expansion in A2 (MoO4)3 system (A =Fe3+ , Cr3+ and A13+) [J]. J Alloy and Compounds, 2002,339(4): 207-210. |
[19] | Attfield M P, Sleight A W. Exceptional negative thermal expansion in AlPO4-17 [J]. ChemMater, 1998, 10(7): 2013-2019. |
[20] | Tao J Z, Sleight A W. Free energy minimization calculations of negative thermal expansion in AlPO4-17 [J]. Journal of Physics and Chemistry of Solids, 2003, 64(7): 1473-1479. |
[21] | Stevens R, Linford J, Field B F Wood, et al. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion materials, cubic a-ZrW2O8 and cubic ZrMo2 O8, from T= (0 to 400 K) [J]. Scripta Materialia, 2003, 35(6): 919-937. |
[22] | Arora Akhilesh K, Sastry V S, Sahu P, et al. The pressure-amorphized state in zirconium tungstate: A precursor to decomposition [J]. J Phys Condens Mater, 2004, 16 (7):1025-1031. |
[23] | Sikka S K J. Negative expansion and its relation to high pressures [J]. Phys Condens Mater, 2004, 16(14): 1033-1039. |
[24] | Sleight A W. Thermal contraction [J]. Science, 1995, 19(2): 64-68. |
[25] | Roy K, Pal D K, Basu S, et al. Synthesis of a new ion exchanger, zirconium vanadate and its application to the separation of barium and cesium radionuclides at tracer levels[J]. Applied Radiation and Isotopes, 2002, 57 (4): 471 -474. |
[26] | 钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,2002.234-239. |
[27] | 张克从.近代晶体学基础(上)[M].北京:科学出版社,1987.120-179. |
[28] | 陈树川,陈凌冰.材料物理性能[M].上海:上海交通大学出版社,1999.253-255. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%