在剪切梁理论的基础上,采用9节点平面单元模拟梁任意截面形状;采用27节点体单元,模拟截面出平面外的二次翘曲位移,从而建立了空间复合材料任意截面薄壁梁考虑二次翘曲的有限元分析模型.根据本文中导出的复合材料有限元模型编制了相应的分析计算程序.算例表明:本文中建立的复合材料薄壁梁模型正确,可以用于考虑多种耦合影响因素作用下复杂结构空间薄壁复合材料梁的有限元分析计算.
参考文献
[1] | Kapania R K,Raciti S.Recent advances in analysis of laminated beams and plates--Part Ⅰ:Shear effects and buckling[J].AIAA Journal,1989,27(7):923-934. |
[2] | Kapania R K,Raciti S.Recent advances in analysis of laminated beams and plates--Part Ⅱ:Vibrations and wave propagation[J].AIAA Journal,1989,27(7):935-946. |
[3] | Wekezer J W.Elastic torsion of thin walled bars of variable cross sections[J].CompStruct,1984,19(3):401-407. |
[4] | Krenk S,Gunneskov O.Statics of thin walled pretwisted beams[J].Int J Numer Methods Eng,1981,17(9):1407-1426. |
[5] | 邓忠民,诸德超.复合材料薄壁梁力学特性分析[J].复合材料学报,2001,18(1):1-6.Deng Zhongmin,Zhu Dechao.Analysis on mechanical characteristic of composite thin-walled beams[J].Acta Materiae Compositae Sinica,2001,18(1):1-6. |
[6] | 息志臣,陈浩然.复合材料层合梁理论[J].复合材料学报,1994,11(2):1-6.Xi Zhichen,Chen Haoran.The theory for composite laminated beams[J].Acta Materiae Com positae Sinica,1994,11 (2):1-6. |
[7] | Librescu Liviu,Qin Zhanming,Damadar R Ambur,et al.Implications of warping restraint on statics and dynamics of elastically tailored thin-walled composite beams[J].International J of Mechanical Sciences,2003,45(8):1247-1267. |
[8] | Stemple A D,Lee S W.A finite element model for composite beams with arbitrary cross-sectional warping[J].International Journal for Numerical Methods in Engineering,1987,24(12):304-313. |
[9] | 蒋咏秋.复合材料力学[M].西安:西安交通大学出版社,1990.58-82.Jiang Yongqiu.Composite Material Mechanics[M].Xi'an:Xi'an Jiaotong University Press,1990.58-82. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%