欢迎登录材料期刊网

材料期刊网

高级检索

借助于几何概率中的一些相关理论,从理论分析的角度,对表面为凸形曲线或曲面的二维和三维任意形状粒子建立了表观界面过渡区厚度统计平均值和实际界面过渡区厚度之间的定量关系.结果表明,对于二维凸形粒子,截面分析法所得的表观界面过渡区厚度的统计平均值与实际界面过渡区厚度之间的比值小于π/2.精确比值与粒子的形状有关.如果实际界面过渡区厚度与粒子的尺寸相比可以忽略的话,截面分析法所得的表观界面过渡区厚度的统计平均值与实际界面过渡区厚度之间的比值约等于π/2.对于三维凸形粒子,截面分析法所得的表观界面过渡区厚度的统计平均值与实际界面过渡区厚度之间的比值小于2,比值的精确解与粒子的形状有关.如果实际界面过渡区厚度与粒子的尺寸相比可以忽略的话,截面分析法所得的表观界面过渡区厚度的统计平均值与实际界面过渡区厚度之间的比值约等于2.

参考文献

[1] 陈惠苏,孙伟,Stroeven P.水泥基复合材料集料与浆体界面研究综述Ⅰ:实验技术[J].硅酸盐学报,2004,32(1):63-70.Chen Huisu,Sun Wei,Stroeven P.Interfacial transition zone between aggregate and paste in cementitious composites--A review Ⅰ:Experimental techniques[J].J Chin Ceram Soc,2004.32(1):63-70.
[2] 陈惠苏,孙伟,Stroeven P.水泥基复合材料集料与浆体界面研究综述Ⅱ:界面微观结构的形成、劣化机理及其影响因素[J].硅酸盐学报,2004,32(1):71-81.Chen Huisu,Sun Wei,Stroeven P.Interfacial transition zon between aggregate and paste in cementitious composites--A review Ⅱ:Mechanism of formation and degradation of ITZ's microstructure,and its influence factors[J].J Chin Ceram Soc,2004,32(1):71-81.
[3] 陈惠苏,孙伟,Stroeven P.水泥基复合材料界面过渡区对材料宏观性能的影响[J].建筑材料学报,2005,8(1):51-62.Chen Huisu,Sun Wei,Stroeven P.Review on the study of effect of ITZ on macro-properties of cementitious composites[J].Journal of Building Materials,2005,8(1):51-62.
[4] Scrivener K.Characterisation of the ITZ and its quantification by test methods[C] // Alexander M G,Arliguie G,Ballivy G,et al,eds.Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites.Cachan Cedex:RILEM Publications SARL,1999:1-15.
[5] Stroeven P.Analytical and computer-simulation approaches to the extent of the interfacial transition zone in concrete[C] //Brandt A M,Li V C,Marshall I H,eds.Brittle Matrix Composites 6.Warsaw:ZTUREK RSI and Woodhead Publ,2000:465-474.
[6] 陈惠苏,孙伟,赵庆新,等.截面分析法对界面过渡区厚度的放大作用[J].硅酸盐学报,2003,31(11):1130-1134.Chen Huisu,Sun Wei,Zhao Qingxin,et al.Overestimation of thickness of interfacial transition zone of aggregate in concrete by sectional analysis method[J].J Chin Ceram Soc,2003,31(11):1130-1134.
[7] 陈惠苏,孙伟,Stroeven P.水泥基复合材料界面过渡区体积分数的定量计算[J].复合材料学报,2006,23(2):133-142.Chen Huisu,Sun Wei,Stroeven P.Quantitative solution of volume fraction of interface in cementitious composites[J].Acta Materiae Compositae Sinica,2006,23(2):133-142.
[8] Solomon H.Geometric Probability[M].Philadelphia:Society for Industrial and Applied Mathematics,1978:65.
[9] Santalo L A.Integral Geometry and Geometric Probability[M].London:Addison-Wesley Publishing Company,1976:217-220.
[10] Kendall M G,Moran P A P.Geometrical Probability[M].London:Charles Griffin,1963:1; 74.
[11] Klain D A.Introduction to Geometric Probability[M].Cambridge:Cambridge University Press,1997:122.
[12] Michielsen K,De Raedt H.Integral geometry morphological image analysis[J].Physics Reports,2001,347(6),461-538.
[13] Kern W F,Bland J R.Solid Mensuration with Proofs[M].2nd ed.New York:Wiley,1948:4.
[14] Hilliard J E,Lawson L R.Stereology and Stochastic Geometry[M].Dordrecht:Kluwer Academic Publishers,2003:76;100; 407.
[15] Stroeven P.Stereological estimates for roughness and tortuosity in cementitious composites[J].Image Analysis & Stereology,2000,19(1):67-70.
[16] Zheng J J.Mesostructure of concrete:Stereological analysis and some mechanical Implications[D].Delft:Delft University Press,2000:19-20.
[17] Walraven J C.Aggregate interlock:A theoretical and experimental analysis[D].y Delft:Delft University Press,1980:67.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%