欢迎登录材料期刊网

材料期刊网

高级检索

在对纤维缠绕复合材料缠绕图案分析的基础上,考虑到纤维束的交叠与波动,提出一种用于计算纤维缠绕复合材料弹性模量的方法.该方法是在纤维缠绕图案中提取一代表单元,将代表单元分成层板区域和纤维束波动区域.层板区域用经典层板理论计算弹性模量; 纤维束波动区域根据纤维波动的细观图形及走势计算弹性模量.根据层板区域和纤维束波动区域在代表单元中所占的比例,组合2个区域的弹性模量以获得代表单元的总体弹性模量.通过测试炭纤维/环氧树脂缠绕管在轴向拉伸载荷下的轴向弹性模量及泊松比,验证了理论计算结果,表明该计算方法能较准确地计算纤维缠绕复合材料的弹性模量,因此可为这类材料的设计计算提供有益的理论依据.

参考文献

[1] Potluri P,Parlak I,Ramgulam R,et al.Analysis of tow deformations in textile preforms subjected to forming forces[J].Composites Science and Technology,2006,66:297-305.
[2] 王立朋,燕瑛.编织复合材料弹性性能的细观分析及实验研究[J].复合材料学报,2004,21(4):152-156.Wang Lipeng,Yan Ying.Micro analysis and experimental study of the elastic properties of braided composites structure[J].Acta Materiae Compositae Sinica,2004,21(4):152-156.
[3] Xue P,Cao J,Chen J.Integrated micro/macro-mechanical model of woven fabric composites under large deformation[J].Composite Structures,2005,70:69-80.
[4] 徐焜,许希武,汪海.三维四向编织复合材料的几何建模及刚度预报[J].复合材料学报,2005,22(1):133-138.Xu Kun,Xu Xiwu,Wang Hai.On geometrical model and stiffness prediction of 3D 4-directional braided composites[J].Acta Materiae Compositae Sinica,2005,22(1):133-138.
[5] 孙颖,李嘉禄,亢一阑.二步法三维编织复合材料弹性性能的有限元法预报[J].复合材料学报,2005,22(1):108-113.Sun Ying,Li Jialu,Kang Yilan.Finite element prediction of elastic properties of two-step three dimensional braided composites[J].Acta Materiae Compositae Sinica,2005,22(1):108-113.
[6] 杨振宇,卢子兴.三维四向编织复合材料弹性性能的理论预测[J].复合材料学报,2004,21(2):134-141.Yang Zhenyu,Lu Zixing.Theoretical prediction of the elastic properties of three-dimensional and four-directional braided composites[J].Acta Materiae Compositae Sinica,2004,21(2):134-141.
[7] Ishikawa T,Chou T W.Stiffness and strength behaviour of woven fabric composites[J].Journal of Materials Science,1982,17:3211-3220.
[8] Ishikawa T,Chou T W.One-dimensional micromechanical analysis of woven fabric composites[J].AIAA Journal,1983,21(12):1714-1721.
[9] Whitcomb J D,Srirengan K,Chapman C.Evaluation of homo-genization for global/local stress analysis of textile composites[J].Composites Structures,1995,31:137-149.
[10] Whitcomb J D,Woo K S.Enhanced direct stiffness method for finite-element analysis of textile composites[J].Composite Structures,1994,28(4):385-390.
[11] Woo K S,Suh Y W,Whitcomb J D.Effect of phase shift on engineering properties of[±θ] plain weave laminates[J].Journal of Composite Materials,2005,39(6):479-495.
[12] Karami G,Garnich M.Effective moduli and failure considerations for composites with periodic fiber waviness[J].Compo-site Structures,2005,67:461-475.
[13] Zeman J,Sejnoha M.On determination of periodic unit cell for plain weave fabric composites[J].Engineering Mechanics,2002,12(9):65-74.
[14] Zeman J,Sejnoha M.Homogenization of plain weave compo-sites with imperfect microstructure,Part Ⅰ:Theoretical formulation[J].International Journal of Solids and Structures,2004,41:6549-6571.
[15] Yuan F G,Yang W,Kim H.Analysis of axisymmetrically-loaded filament wound composite cylindrical shells[J].Composite Structures,2000,50:115-130.
[16] Bai J,Hu G,Bompard P.Mechanical behavior of ±55° filament-wound glass-fiber/epoxy-resin tubes Ⅱ:Micromechanical model of damage initiation and the composite between different mechanisms[J].Composites Science and Techno-logy,1997,57:155-164.
[17] Bai J,Seeleuthner P,Bompard P.Mechanical behavior of ±55° filament-wound glass-fiber/epoxy-resin tubes Ⅰ:Microstructural analyses,mechanical behavior and damage mechanisms of composite tubes under pure tensile loading,pure internal pressure,and combined loading[J].Composites Science and Technology,1997,57:141-153.
[18] Rousseau J,Perreux D,Verdiere N.The influence of winding patterns on the damage behavior of filament-wound pipes[J].Composites Science and Technology,1999,59:1439-1449.
[19] 孙江.纤维缠绕复合材料管件的缠绕图型及纤维波动程度[J].玻璃钢/复合材料,2004(2):36-38.Sun Jiang.Winding pattern of filament wound composite tube and undulation degree[J].Fiber Reinforced Plastics/Compo-sites,2004(2):36-38.
[20] Hill R.A self-consistent mechanics of composite materials[J].Journal of the Mechanics and Physics of Solids.1965,13:213-222.
[21] Benveniste Y.A new approach to the application of Mori-Tanaka theory in composite materials[J].Mechanics of Materials,1987,6:147-157.
[22] Walpole J L.On the overall elastic moduli of composite mater-ials[J].Journal of the Mechanics and Physics of Solids,1969,17:289-301.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%