含夹杂Voronoi单元通过在基体单元中引入一任意夹杂,可以更好地反映非均质材料中微结构特性.基于参数势能和余能原理,推导了无夹杂和含夹杂Voronoi单元有限元列式,并在此基础上形成二次规划求解模型.将含夹杂Voronoi单元应用于非均质材料宏观弹塑性性能预测计算中,分析了非均质材料中夹杂对其宏观等效弹塑性力学性能的影响.数值结果与其它方法所得结果的比较证明了本文中所给出模型的正确性和工程可适用性.
参考文献
[1] | Brockenbrough J R,Suresh S,Wienecke H A.Deformation of metal-matrix composites with continuous fibers:Geometrical effects of fiber distribution and shape[J].Acta Metallurgica Materialia,1991,39(55):735-752. |
[2] | Christman T,Needleman A,Suresh S.An experimental and numerical study of deformation in metal-ceramic composites[J].Acta Metallurgica Materialia,1989,37(11):3029-3050. |
[3] | Hashin Z,Strikman S.A variational approach to the theory of the elastic behavior of multiphase materials[J].Journal of the Mechanics and Physics of Solids,1963,11(2):127-140. |
[4] | Benvensite T.A new approach to the Mori-Tanaka's theory in composite materials[J].Mechanics of Materials,1987,6(2):147-157. |
[5] | Hill R.A self consistent mechanics of composite materials[J].Journal of the Mechanics and Physics of Solids,1965,13(2):213-222. |
[6] | Hori M,Nemat-Nasser S.Double inclusion model and overall moduli of multiphase composites[J].Journal of the Mechanics and Physics.of Solids,1993,14(3):189-206. |
[7] | Ghosh S,Mukhopadhyay S N.A material based finite element analysis of heterogeneous media involving Dirichlet tessellations[J].Computer Methods in Applied Mechanics and Engineering,1993,104(3/4):211-247. |
[8] | Pian T H H.Derivation of element stiffness matrices by assumed stress distribution[J].AIAA Journal,1964,2(5):1333-1336. |
[9] | Ghosh S,Mallett R L.Voronoi cell finite elements[J].Computers and Structures,1994,50(1):33-46. |
[10] | Zhang J,Katsube N.Problems related to application of eigen strains in a finite element analysis[J].International Journal for Numerical Methods in Engineering,1994,37(18):3185-3193. |
[11] | Zhang J,Katsube N.A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J].International Journal for Numerical Methods in Engineering,1995,38(10):1635-1653. |
[12] | Ghosh S,Moorthy S.Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method[J].Computer Methods in Applied Mechanics and Engineering,1995,121(1/4):373-409. |
[13] | Ghosh S,Lee K,Moorthy S.Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method[J].International Journal of Solids and Structures,1995,32(1):27-62. |
[14] | Grujicic M,Zhang Y.Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method[J].Materials Science and Engineering A,1998,251(1/2):64-76. |
[15] | Lee K,Ghosh S.A microstructure based numerical method for constitutive modeling of composite and porous materials[J].Materials Science and Engineering A,1999,272(1):120-133. |
[16] | Raghavan P,Li S,Ghosh S.Two scale response and damage modeling of composite materials[J].Finite Elements in Analysis and Design,2004,40(12):1619-1640. |
[17] | 钟万勰.岩土力学中的参变量最小余能原理[J].力学学报,1986,18(3):253-258.Zhong Wanxie.On parametric complementary energy variational principle in soil mechanics[J].Acta Mechanica Sinica,1986,18(3):253-258. |
[18] | 钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[M].北京:科学技术出版社,1997.Zhong Wanxie,Zhang Hongwu,Wu Chengwei.Parametric variational principle and its application in engineering[M].Beijing:Scientific and Technical Publishers,1997. |
[19] | Zhang H W,Xu W L,Di S L,Thomson P F.Quadratic programming method in numerical simulation of metal forming process[J].Finite Elements in Analysis and Design,2002,191(49):5555-5578. |
[20] | Zhang H W,Zhang X W,Chen J S.A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems[J].Computers and Structures,2003,81(17):1739-1749. |
[21] | Zhang H W,Wang H.Parametric variational principle based elastic-plastic analysis of heterogeneous materials with Voronoi finite element method[J].Applied Mathematics and Mechanics,2005,27(8):1049-1060. |
[22] | Zhang H W,Schrefler B A.Gradient-dependent plasticity model and dynamic strain localization analysis of saturated and partially saturated porous media:One dimensional model[J].European Journal of Mechanics A/Solids,2000,19 (3):503-524. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%