欢迎登录材料期刊网

材料期刊网

高级检索

制备了由纤维增强树脂复合材料层与黏弹阻尼材料层交替层合的7层各向异性层合阻尼结构,借助动态热机械分析仪(DMA Q800)首次考察了不同的结构应变振幅和不同的边界条件对该结构内耗温度频率特性的影响,为新型减振降噪阻尼结构的理论分析与应用提供相应的实验研究依据.结果表明:在不同的边界条件和常温(25℃)下,各向异性层合阻尼结构的内耗都随着结构应变振幅的增加而减少,且结构内耗峰所对应的温度随应变振幅的增加而向低温方向移动;当结构应变振幅相同时,单悬臂梁模式下的结构内耗最高,双悬臂梁模式下次之,三点弯曲模式下最低.

参考文献

[1] 戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社,1991:304-345.Dai Depei.Engineering application of damping technique[M].Beijing:Tsinghua University Press,1991:304-345.
[2] 孙庆鸿,张启军,姚慧珠,等.振动与噪声的阻尼控制[M].北京:机械工业出版社,1992:102-132.Sun Qinghong,Zhang Qijun,Yao Huizhu,et al.Damping control of vibration and noise[M].Beijing:China Machine Press,1992:102-132.
[3] 张志民.复合材料结构力学[M].北京:北京航空航天大学出版社,1993:35-50.Zhang Zhimin.Structural mechanics for composites material[M].Beijing:Beijing University of Aeronautics and Astronautics Press,1993:35-50.
[4] Cao Y H,Li M J.Studies on damping characteristics and parameter optimization of anisotropic laminated structure[J].Aircraft Engineering and Aerospace Technology,2002,74(4):332-337.
[5] 李明俊,苏嫒,孙向春,等.层合阻尼结构各向异性设计之阻尼特性分析[J].复合材料学报,2002,19(3):94-97.Li Mingjun,Su Yuan,Sun Xiangchun,et al.Anisotropic design and its damping analysis of laminated damped structure[J].Acta Materiae Compositae Sinica,2002,19(3):94-97.
[6] 李明俊,刘桂武,徐泳文,等.粘结层对各向异性层合阻尼结构内耗特性的影响[J].复合材料学报,2005,22(4):96-99.Li Mingjun,Liu Guiwu,Xu Yongwen,et al.Influences of bonding layer on the internal friction characteristics of anisotropic laminated damped structures[J].Acta Materiae Compositae Sinica,2005,22(4):96-99.
[7] Kovas B.Vibration analysis of a damped arch using an iterative laminate model[J].Journal of Sound and Vibration,2002,254(2):367-378.
[8] Ganapathi M,Patel B P.Flexural loss factor of sandwich and laminated composite beams using linear and nonlinear dynamic analysis[J].Composites Part B,1999,30(4):245-256.
[9] 张少辉,陈花玲.共固化复合材料粘弹性阻尼结构的损耗因子研究[J].航空材料学报,2005,25(1):53-57.Zhang Shaohui,Chen Hualing.Damping analysis of co-cured composites with internal viscoelastic layers[J].Journal of Aeronautical Materials,2005,25(1):53-57.
[10] 李明俊,刘桂武,徐泳文,等.不同阻尼层材料对交替层合各向异性阻尼结构动态性能的影响[J].机械工程材料,2005,29(11):4-7.Li Mingjun,Liu Guiwu,Xu Yongwen,et al.Influence of different damping layers on dynamic characteristics of alternately laminated anisotropic damped structures[J].Materials for Mechanical Engineering,2005,29(11):4-7.
[11] 李明俊,刘桂武,徐泳文,等.交替层合阻尼结构主控各向异性层参数对结构阻尼的影响[J].复合材料学报,2006,23(1):180-184.Li Mingjun,Liu Guiwu,Xu Yongwen,et al.Parameter effects of the main controlled anisotropic layer on structural damping of alternately laminated damped structures[J].Acta Materiae Compositae Sinica,2006,23(1):180-184.
[12] 李明俊,叶皓,徐泳文,等.各向异性参数对层合阻尼薄板损耗因子的影响分析[J].机械工程材料,2005,29(2):10-13.Li Mingjun,Ye Hao,Xu Yongwen,et al.Analysis on the effects of anisotropic parameters on the loss factor of laminated damping plates[J].Materials for Mechanical Engineering,2005,29(2):10-13.
[13] 刘桂武,李明俊,徐泳文,等.层合顺序对各向异性层合阻尼结构动态性能的影响[J].南昌航空工业学院学报,2004,18(4):41-44.Liu Guiwu,Li Mingjun,Xu Yongwen,et al.Influence of laminated orders on dynamic characteristics of anisotropic damped structures[J].Journal of Nanchang Institute of Aeronautical Technology,2004,18(4):41-44.
[14] Maged A O,Ayman A.Effect of the particle size on the viscoelastic properties of filled polyethylene[J].Polymer,2006,47(7):2357-2368.
[15] Eraki M H,Lawindy A M,Hassan H H.The physical properties of pressure sensitive rubber composites[J].Polymer Degradation and Stability,2006,91(7):1417-1423.
[16] Asta A D,Ragni L.Experimental tests and analytical model of high damping rubber dissipating devices[J].Engineering Structures,2006,28(13):1874-1884.
[17] 龚元明,孙志杰,贺成红,等.不同预载/动载下纤维增强环氧树脂复合材料动态粘弹特性[J].复合材料学报,2006,23(1):26-30.Gong Yuanming,Sun Zhijie,He Chenghong,et al.Dynamic viscoelasticity of fiber reinforced composites under different preload/dynamic load[J].Acta Materiae Compositae Sinica,2006,23(1):26-30.
[18] 过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002:21-76.Guo Meili.Dynamic mechanical thermal analysis of polymer and composites[M].Beijing:Chemical Industry Press,2002:21-76.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%