为了对GFRP(玻璃纤维增强塑料)拉挤成型非稳态温度场与固化度进行数值模拟,依据固化动力学和非稳态导热理论,建立了温度场和固化度动力学模型.通过DSC试验分析确定了模型中固化度动力学参数.利用有限元与有限差分相结合的方法,建立温度场和固化度数值模型,应用Euler-Cauch逐步迭代法实现计算机解耦.利用有限元软件FEPG编制拉挤固化模拟程序,详细探讨了模具温度、拉挤速度、初始温度等拉挤工艺参数对模具内温度和固化度分布的影响.数值模拟值与FBG光栅测量值比较结果吻合,能够对拉挤工艺参数制定提供有用的信息,以指导拉挤工艺制定.
参考文献
[1] | Jacob A.Pultrusion update[J].Reinforced Plastic,2004,48(6):30-32. |
[2] | Zhu J.Pultrusions protect steel bridge[J].Reinforced Plastic,2003,47(11):7. |
[3] | Carlone P,Palazzo G S,Pasquino R.Pultrusion manufac-turing process development by computational modelling and methods[J].Mathematical and Computer Modelling,2006,44:701-709. |
[4] | 章熙民,任泽霈,梅飞鸣.传热学[M].北京:中国建筑工业出版社,1997:9-13. |
[5] | 王琪.化学动力学导论[M].长春:吉林人民出版社,1982:1-10. |
[6] | 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997:46-68. |
[7] | Joshi S C,Lam Y C.Three-dimensional finite-element/nodal-control-volume simulation of the pultrusion process with tem-perature-dependent material properties including resin shrink-age[J].Composites Science and Technology,2001,61(11):1539-1547. |
[8] | Joshi S C,Lam Y C,Tun U W.Improved cure optimization in pultrusion with pre-heating and die-cooler temperature[J].Composites Part A,2003,12(3):1151-1159. |
[9] | Liu Xiaolin,Crouch I G,Lain Y C.Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package[J].Composites Science and Technology,2000,60(6):857-864. |
[10] | Kalamkarov A L,Fitzgerald S B,MacDonald D O.The use of Fabry Perot fiber optic sensors to monitor residual strains dur-ing pultrusion of FRP composites[J].Composites Part B,1999,30(2):167-175 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%