欢迎登录材料期刊网

材料期刊网

高级检索

采用Ф100 mm分离式霍普金森压杆(SHPB)试验装置研究了不同纤维体积掺量的玄武岩纤维混凝土在不同应变率下的冲击压缩力学性能,并对试验的有效性进行了分析.结果表明:玄武岩纤维混凝土的动态强度增长因子与平均应变率的对数近似呈线性关系,强度与变形能力随平均应变率的提高而线性增加,体现了很强的应变率相关性;纤维体积掺量为0.1%的玄武岩纤维混凝土较素混凝土的动态抗压强度提高了26%,变形能力提高了14%;纤维体积掺量分别为0.2%、0.3%的玄武岩纤维混凝土的动态抗压强度比素混凝土高出25%左右,而变形能力较素混凝土无明显优势;在玄武岩纤维混凝土的SHPB试验中,试件破坏时刻为123.3~239.45 μs,近似恒应变率加载时间比例约为62%,且应变率曲线的波动范围控制在23%左右,能够较好地满足应力均匀分布及恒应变率加载要求,表明SHPB试验结果可靠.

参考文献

[1] 崔毅华.玄武岩连续纤维的基本特性[J].纺织学报,2005,26(5):120-121.Cui Yihua.Primary properties of basalt continuous filament[J].J Spin,2005,26(5),120-121.
[2] 国家水泥混凝土制品质量监督检验中心.连续玄武岩纤维混凝土性能试验检测报告,(委)字纤维类(2006)第20号[R].苏州,2006:1-2.National Cement & Concrete Quality Test Center.Test report of mechanical properties of BFRC[R].Snzhou,2006:1-2.
[3] Dias D P,Thaumaturgo C.Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J].Cement and Concrete Composites,2005,27:49-54.
[4] Zielinski K,Olszewski P.The impact of basaltic fibre on selected physical and mechanical properties of cement mortar[J].Concrete Precasting Plant and Technology,2005,71(3):28-33.
[5] Prew D J,Forrestal M J,Chen W.Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J].Experimental Mechanics,2002,42(1):93-106.
[6] Li X B,Lok T S,Zhao J,Zhao P J.Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress strain curves for rocks[J].International Journal of Rock Mechanics & Mining Sciences,2000,37:1055-1060.
[7] Zhou Z L,Li X B,Zuo Y J,Hong L.Fracture characteristics of rock fragmentation at strain rate of 100《'0~10《'2 s《'-1[J].J Cent South Univ Teehnol,2006,13(3):290-294.
[8] Song B,Chen W,Lu W Y.Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam[J/OL].International Journal of Mechanical Sciences,doi:10.1016/j.ijmecsci.2007.04.003.
[9] 刘飞,赵凯,王肖钧,任辉启.软材料和松散材料SHPB冲击压缩实验方法研究[J].实验力学,2007,22(1):20-26.Liu Fei,Zhao Kai,Wang Xiaojun,Ren Huiqi.A study on SHPB method of soft/porous materials[J].Journal of Experimental Mechanics,2007,22(1):20-26.
[10] Ravichandran G,Subhash G.Critical appraisal of limiting strain rates for compression testing ceramics in a split Hopkinson pressure bar[J].J Am Ceram Soc,1994,77(1):263-267.
[11] 王礼立.应力波基础[M].北京:国防工业出版社,2005:52-60.Wang Lili.Foundation of stress waves[M].Beijing:National Defense Industry Press,2005:52-60.
[12] Tedesco J W,Ross C A.Strain-rate-dependent constitutive equations for concrete[J].ASME J Pressure Vessel Technol,1998,120:398-405.
[13] 王道荣,胡时胜.骨料对混凝土材料冲击压缩行为的影响[J].实验力学,2002,17(1):23-27.Wang Daorong,Hu Shisheng.Influence of aggregate on the compression properties of concrete under impact[J].Journal of Experimental Mechanics,2002,17(1):23-27.
[14] Bracc W F,Joncs A H.Comparison of uniaxial deformation in shock and static loading of three rocks[J].Geophysical Research,1971,76(20):4913-4921.
[15] Janach W.The rule of bulking in brittle failure under rapid compression[J].International Journal of Rock Mechanical and Mining Science,1976,13(6):177-186.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%