欢迎登录材料期刊网

材料期刊网

高级检索

提出了一个细观力学模型,用于预测非线性黏弹聚合物基复合材料的有效性质.该方法利用广义割线模量方法对单积分型热力学本构进行线性化,并运用Laplace变换技术将黏性问题转化为弹性问题.利用热力学本构拟合高密度聚乙烯的实验数据,得到基体的材料参数.利用该模型计算了玻璃微珠填充高密度聚乙烯复合材料(GB/HDPE)在恒应变率下的应力应变关系,计算结果与文献实验结果吻合较好.数值计算结果表明GB/HDPE.复合材料表现出明显的非线性力学行为.该细观力学模型可以很好地预测复合材料非线性黏弹性性质.

参考文献

[1] Milton G W.The theory of composite[M].Cambridge,England:Cambridge University Press,2002:75-89.
[2] Nemat-Nasser S,Hori M.Micromechanics:Overall properties of heterogeneous materials[M].North-Holland:Elsevier,1993:10-60.
[3] 胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31(3):361-393.Hu Gengkai,Zheng Quanshui,Huang Zhuping.Micromechanics methods for effective elastic properties of composite materials[J].Advances in Mechanics,2001,31(3):361-393.
[4] 周储伟.高体积含量颗粒增强复合材料的一个细观力学模型Ⅰ:弹性分析与等效模量[J].复合材料学报,2005,22(4):125-130.Zhou Chuwei.Micromechanieal model for composites reinforced by large volume fraction of particles Ⅰ:Elastic analysis and effective modulus[J].Acta Materiae Compositae Sinica,2005,22(4):125-130.
[5] 严实,吴林志,孙雨果,杜善义.三维四向编织复合材料有效性能的预报[J].复合材料学报,2007,24(1),158-166.Yan Shi,Wu Linzhi,Sun Yuguo,Du Shanyi.Evaluation of elastic properties of 3D 4-directional braided composites[J].Acta Materiae Compositae Sinica,2007,24(1):158-166.
[6] Li D,Hu G K.Effective viscoelastic behavior of particulate polymer composites at finite concentration[J].Applied Mathematics and Mechanics:English Edition,2007,28(3);297-307.
[7] Wang Y M,Weng G J.Influence of inclusion shape on the overall viscoelastic behavior of composites[J].J Appl Meeh,1992,59(3):510-518.
[8] 杨挺青,罗文波,徐平.黏弹性理论与应用[M].北京;科学出版社,2004:140-171.
[9] Schapery R A.On a thermodynamics constitutive theory and its application to various nonlinear materials[C]//Proceedings of IUTAM Symposium.New York:Springer-Verlag,1968:259-285.
[10] Berveiller M,Zaoui A.An extension of the self-consistent scheme to plastically-flowing polyerystals[J].Journal of the Mechanics and Physics of Solids,1978,26(5):325-344.
[11] Tandon G P,Weng G J.A theory of particle-reinforced plasticity[J].J Appl Mech,1988,55(1):126-135.
[12] Hu G K.A method of plasticity for general aligned spheroidal inclusion or void reinforced composites[J].Int J Plasticity,1996,12(4):439-449.
[13] Hu G K.Composite plasticity based on matrix average second order stress moment[J].Int Journal of Solids and Structures,1997,34(8):1007-1015.
[14] Weng G J.Self-consistent determination of time-dependent behavior of metals[J].Journal of Applied Mechanics,1981,48(1):41-46.
[15] Li J,Wang G J.A secant-viscosity approach to the time-dependent creep of an elastic-viscoplastic composite[J].Journal of the Mechanics and Physics of Solids,1997,45(7):1069-1083.
[16] Masann R,Zaoui A.Self-consistent estimates for the ratedependent elastoplastic behavior of polycrystalline materials[J].Journal of the Mechanics and Physics of Solids,1999,47(7):1543-1568.
[17] Pouya A,Zaoui A.Linearisation and homogenisation for viscoelastic materials[J].Comptes Rendus de l'Academie des Scienees,Série Ⅱ,1999,327(4):365-370.
[18] Levesque M.Modélisation du comportement mécanique de matériaux composites viscoélastiques non linéaires par une approche d'homogénéisation[D].Paris;ENSAM,2004.
[19] Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Metallurgiea,1973,21(5):571-574.
[20] 陈建康,黄筑平.含二相粒子流变材料的损伤理论[M].吉林:吉林科技出版社,2002;30-35.
[21] Hu G K,Weng G J.Influence of thermal residual stresses on the composite macroscopic behavior[J].Mechanics of Materials,1998,27(4):229-240.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%