欢迎登录材料期刊网

材料期刊网

高级检索

研究了双周期含涂层纤维增强复合材料在远场反平面载荷作用时的问题,利用Eshelby等效夹杂方法和Laurent级数展开技术,并结合双准周期Riemann边值问题理论,获得了其全场解析解,得到了应力场和有效模量表达式.与有限元结果的对照显示出本方法的效率和精度.考察了涂层参数对复合材料细观应力场和宏观有效性能的影响.当涂层刚度较大时,涂层内存在高的应力集中,且涂层刚度越大、涂层相对厚度越小,应力集中系数越大.纤维刚度对复合材料有效模量的影响也取决于涂层性能,非常软或非常硬的涂层都大大限制了纤维刚度对复合材料有效模量的贡献.

参考文献

[1] Mouden M E,Cherkaoui M,Molinari A,Berveiller M.The overall elastic response of materials containing coated inclusions in a periodic array[J].International Journal of Engineering Science,1998,36(7/8):813-829.
[2] Matonis V A,Small N c.A macroscopic analysis of composites containing layered spherical inclusions[J].Polymer Engineering and Science,1969,9(2):90-99.
[3] Cherkaoui M,Sabar H,Berveiller M.Elastic composites with coated reinforcements:A micromechanical approach for nonhomothetic topology[J].International Journal of Engineering Scienee,1995,33(6):829-843.
[4] Herve E,Zaoui A.Elastic behaviour of multiply coated fibrereinforced composites[J].International Journal of Engineering Science,1995,33(10):1419-1433.
[5] 戴兰宏,黄筑平,王仁.广义自洽Mori-Tanaka模型及涂层夹杂体复合材料的有效模量[J].固体力学学报,1999,20(3):187-194.Dai Lanhong,Huang Zhuping,Wang Ren.A generalized selfconsistent Mori-Tanaka model for predicting the effective moduli of coated inclusion based composites[J].Acta Mechanica Solida Sinica,1999,20(3):187-194.
[6] 戴兰宏,黄筑平,王仁.N-层涂层夹杂体复合材料有效模量显示表达[J].高分子材料科学与工程,2000,16(3):17-19.Dai Lanhong,Huang Zhuping,Wang Ren.Explicit expression of the effective moduli of N-layered inclusion based composites[J].Polymer Materials Science and Engineering,2000,16(3):17-19.
[7] 邹波,卢子兴.基于五相球模型确定含涂层空心微球复合材料的有效模量[J].复合材料学报,2006,23(5):137-142.Zou Bo,Lu Zixing.Determination of the effective moduli of composite reinforced by hollow coating spheres based on the five phase spherical model[J].Acta Materiae Compositae Sinica,2006,23(5):137-142.
[8] Saito M,lmanishi Y.Host-guest composites containing ultrasonically arranged particles[J].Journal of Materials Science,2000,35(10):2373-2377.
[9] Nunan K C,Keller J B.Effective elasticity tensor of a periodic composite[J].Journal of the Mechanics and Physics of Solids,1984,32(4):259-280.
[10] Aboudi J.Mechanics of composite materials:A unified micromechanical approach[M].Amsterdam:Elsevier,1991;36.
[11] Namat-Nasser S,Hori M.Micromechanics:Overall properties of heterogeneous materials[M].Amsterdam:Elsevier,1999:419.
[12] Xia Z H,Zhang Y F,Ellyin F.A unified periodical boundary conditions for representative volume elements of composites and applications[J].International Journal of Solids and Structures,2003,40(8):1907-1921.
[13] Jiang C P,Xu Y L,Cheung Y K.Lo S H.A rigorous analytical method for doubly periodic cylindrical inclusions under Iongitudinal shear and its application[J].Mechanics of Materials,2004,36(3):225-237.
[14] 徐耀玲,蒋持平.双周期圆柱形夹杂纵向剪切问题的精确解[J].力学学报,2003,35(3):265-271.Xu Yaoling,Jiang Chiping.An exact solution for a doubly periodic array of cylindrical inclusions under longitudinal shear[J].Acta Mechanica Sinica,2003,35(3):265-271.
[15] Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion,and related problems[J].Proceedings of the Royal Society of London:Series A,1957,241(1226):376-396.
[16] 路见可.解析函数边值问题[M].第2版.武汉:武汉大学出版社,2004:164.Lu Jianke.Boundary value problems for analytic function[M].2nd ed.Wuhan:Wuhan University Press,2004:164.
[17] Li X.Applications of doubly quasi-periodic boundary value problems in elastidty theory[D].Berlin:Berlin University,1999.
[18] 谢新亮,肖俊华,蒋持平.双周期电磁弹性纤维增强复合材料的纵向剪切问题[J].复合材料学报,2005,22(5):184-189.Xie Xinliang,Xiao Junhua,Jiang Chiping.Problems of magnetoelectroelastic composites with doubly periodic fibers under longitudinal shear[J].Acta Materiae Compositae Sinica,2005,22(5):184-189.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%