欢迎登录材料期刊网

材料期刊网

高级检索

首次利用水平基物质分布函数推出域内积分与边界积分泛函的形状导数,建立了复合材料刚性连续结构拓扑优化设计理论的新模型.通过将形状导数和增广的Lagrangian乘子法相结合,提出了复合材料结构拓扑优化敏度分析的新方法.设计边界的进化是通过人为掌握目标函数下降的速度来控制.水平基函数的曲面在不改变拓扑结构的前提下上下运动,从而通过边界的合并与分离改变嵌入其中的零水平基面上设计构件的拓扑结果.广泛的2D复合材料悬臂梁研究验证了本文中方法的有效性.

参考文献

[1] Eschenauer H A,Olhoff N.Topology optimization of continuum structures:A review[J].Applied Mechanics Review,2001,54:331-390.
[2] Allaire G,Jouve F.A level-set method for vibration and multiple loads structural optimization[J].Comput Methods Appl Mech Engrg,2005,194:3269-3290.
[3] Rozvany G I N,Birker T.On singular topologies in exact layout optimization[J].Structural Optimization,1994,8(4):228-235.
[4] Bendsφe M P.Kikuchi N.Generating optimal topology in structural design using a homogenization method[J].Computational Methods in Applied Mechanics and Engineering,1988,71:197-224.
[5] Suzuki K,Kikuehi N.A homogenization method for shape and topology optimization[J].Comput Meth Appl Mech Engrg,1991,93:291-318.
[6] Rozvany G,Zhou M,Birker T.Generalized shape optimization without homogenization[J].Structural Optimization,1992,4:250-254.
[7] Allaire G,Jouve F,Toader A M.Structural optimization using sensitivity analysis and a level-set method[J].Journal of Computational Physics,2003,194:363-393.
[8] Kim C,Kota S,Moon Y.An instant center approach toward the conceptual design of compliant mechanisms[J].ASME Journal of Mechanical Design,2006,128:542-550.
[9] Wang H.A unit cell approach for lightweight structure and compliant mechanism[D].Atlanda:Georgia Institute of Technology,2004:56-78.
[10] Wang S,Wang M.Radial basis functions and level set method for structural topology optimization[J].International Journal of Numerical Method for Engineering,2006,65;2060-2090.
[11] Bendsφe M P,Sigmund O.Topology optimization:Theory,methods,and applications[M].Berlin,Germany:Springer,2003:160-167.
[12] Wang M,Wang X M,Guo D M.A level set method for structural topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2003,192:227-246.
[13] Azegami H,Wu Z C.Domain optimization analysis in linear elastic problems:Approach using traction method[J].JSME Int J Ser A,1996,39:272-278.
[14] Sokolowski J,Zolesio J P.Introduction to shape optimization:Shape sensitivity analysis[M].Berlin,Germany:Springer,1991:111-163.
[15] Choi Kyung K,Kim Nam-Ho.Structural sensitivity analysis and optimization 1:Linear system[M].New York:Science+Business Media,Inc,2005:221-238.
[16] 徐成贤,陈志平,李乃成.近代优化方法[M].北京:科学出版社,2002:291-304.
[17] Sethian J A,Wiegmann A.Structural boundary design via level set and immersed interface methods[J].Journal of Computational Physics,2000,163:489-528.
[18] Osher S,Fedkiw R.Level set methods and dynamic implicit surface[M].Berlin,Germany:Springer,2003;5-37.
[19] Meske R,Sauter J,Schnack E.Nonparametric gradient-less shape optimization for real-world application[J].Structural and Multidisciplinary Optimization,2005,30:201-218.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%