欢迎登录材料期刊网

材料期刊网

高级检索

利用复合材料细观有限元分析方法,对SiC颗粒增强6061Al合金复合材料的单拉行为,单轴棘轮行为进行数值模拟.模拟中讨论了耦合自由边界、界面结合状态对复合材料棘轮行为的影响;同时,分析了基体和界面的微观变形特征及其演变规律.选取1组合理的微结构参数,对复合材料的棘轮行为进行数值模拟,并通过与实验结果的比较,检验有限元模型的合理性.结果表明:耦合边界很大程度改善了模拟结果;界面结合状态越好,即界面弹性模量、屈服强度和硬化模量越高,产生的棘轮变形越小;具有合理参数值的弱界面模型给出的棘轮变形预测结果比完好界面模型的结果更接近于实验值.

参考文献

[1] 袁广江,章文峰,王殿斌,桂满昌,吴洁君.SiC颗粒增强铝基复合材料制备及机加工性能研究[J].复合材料学报,2000,17(2):38-41.Yuan Guangjiang,Zhang Wenfeng,Wang Dianbin,Gui Manehang,Wu Jiejun.Preparation and cutting property of SiC particles reinforced aluminum matrix composite[J].Acta Mater Comp Sin,2000,17(2):38-41.
[2] 曲寿江,耿林,曹国剑,雷廷权.挤压铸造法制备可变形SiCP/Al复合材料的组织与性能[J].复合材料学报,2003,20(3):69-73.Qu Shoujiang,Geng Lin,Cao Guojian,Lei Tingquan.Microstructure and properties of deformable SiCp/Al composite fabricated by squeeze casting method[J].Acta Mater Comp Sin,2003,20(3):69-73.
[3] Masson R,Bornert M,Suquet P,Zaoui A.An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals[J].J Mech Phys Solids,2000,48(6/7):1203-1227.
[4] Pierard O,Doghri I.An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites[J].Int J Plasticity,2006,22(1):131-157.
[5] Gonzalez G,Segurado J,LLorca J.Numerical simulation of elasto-plastic deformation of composites:Evolution of stress microfields and implications for homogenization models[J].J Mech Phys Solids,2004,52(7):1573-1593.
[6] Pierard O,LLorca J,Segurado J,Doghri I.Micromechanics of particle-reinforced elasto-viscoplastie composites:Finite element simulations versus affine homogenization[J].Int J Plasticity,2007,23(6):1041-1060.
[7] LLorca J.Fatigue of particle-and whisker-reinforced metalmatrix composites[J].Progress in Mater Sci,2002,47(3):283-353.
[8] Hartmann O,Kemnitzer M,Biermann H.Influence of reinforcement morphology and matrix strength of metal matrix composites on the cyclic deformation and fatigue behaviour[J].Int J Fatigue,2002,24(2/4):215-221.
[9] Srivatsan T S,Al-Hajri M,Hannon W,Vasudevan V K.The strain amplitude-controlled cyclic fatigue,deformation and fracture behavior of 7034 aluminum alloy reinforced with silicon carbide particulates[J].Mater Sci Engng A,2004,379(1/2):181-196.
[10] Fleming W J,Temis J M.Numerical simulation of cyclic plasticity and damage of an aluminium metal matrix composite with particulate SiC inclusions[J].Int J Fatigue,2002,24(10):1079-1088.
[11] Ohno N.Recent progress in constitutive modeling for ratchetting[J].Mater Sci Res Int,1997,3(2):1-9.
[12] 陈旭,焦荣,田涛.棘轮效应预测及其循环本构模型研究进展[J].力学进展,2003,33(4):461-470.Chen Xu,Jiao Rong,Tian Tao.Research advances of ratcheting effects and cyclic constitutive models[J].Advances in Mechanics,2003,33(4):461-470.
[13] Kang G Z,Li Y G,Gao Q.Non-proportionally multiaxial ratcheting of cyclic hardening materials at elevated temperatures:Experiments and simulations[J].Mech Mater,2005,37(5).1101-1118.
[14] Kang G Z,Kan Q H,Zhang J,Sun Y F.Time-dependent ratcheting experiments of SS304 stainless steel[J].Int J Plast,2006,22(5):858-894.
[15] 康国政,刘宇杰,董城.SiCp/6061Al合金复合材料的单轴棘轮行为及热处理工艺的影响[J].复合材料学报,2005,22(增刊):85-91.Kang Guozheng,Liu Yujie,Dong Cheng.Uniaxial ratcheting behaviors of SiCp/6061Al alloy composites and the effect of thermal treatment[J].Acta Mater Comp Sin,2005,22(Suppl):85-91.
[16] 康国政.SiCp/6061Al合金复合材料的高温单轴棘轮行为及其时相关特性[J].复合材料学报,2006,23(2):1-8.Kang Guozheng.Uniaxial ratcheting of SiCp/6061Al alloy composites and its time-dependence at high temperature[J].Acta Mater Comp Sin,2006,23(2):1-8.
[17] 郭素娟,康国政.SiCp/6061Al合金复合材料循环变形行为的有限元模拟[J].金属学报,2006,42(10);2-5.Guo Sujuan,Kang Guozheng.Finite element simulation for cyclic deformation of SiCp/6061Al alloy composites[J].Acta Metallurgica Sinca,2006,42(10):2-5.
[18] 董城,康国政.SiCp/6061Al合金复合材料高温时相关棘轮行为的数值模拟[J].复合材料学报,2007,24(4):82-87.Dong Cheng,Kang Guozheng.Numerical simulation for timedependent ratcheting of SiCp/6061Al alloy composites at high temperature[J].Acta Mater Comp Sin,2007,24(4):82-87.
[19] Kang G Z,Guo S J,Dong C.Numerical simulation for cyclic deformation of discontinuously reinforced metal matrix composites[J].Mater Sci Eng A,2006,426(1/2):66-76.
[20] 康国政,高庆,刘世楷,张吉喜.界面对短纤维增强金属基复合材料力学性能的影响[J].复合材料学报,1999,16(1):35-40.Kang Guozheng,Gao Qing,Liu Shikai,Zhang Jixi.Interfacial effects on mechanical behaviors of short fiber reinforeed metal matrix composite[J].Acta Mater Comp Sinica,1999,16(1):35-40.
[21] Kang G Z,Gao Q.Tensile properties of randomly oriented short δ-Al2O3 fiber reinforced aluminum alloy composites Ⅱ:Finite element analysis for stress transfer,elastic modulus and stress-strain curves[J].Composites Part A,2002,33(5):657-667.
[22] 隋贤栋,罗承萍,欧阳柳章,骆灼旋.SiCp/ZL109复合材料中SiC的界面行为[J].复合材料学报,2000,17(1):65-70.Sui Xiandong,Luo Chengping,Ouyang Liuzhang,Luo Zhuoxuam SiC particulate and their interracial behador in SiCp/ZL109 composite[J].Acta Mater Comp Sin,2000,17(1):65-70.
[23] Mital S K.Interfacial microfracture in high temperature metal matrix composites[J].J Comp Mater,1993,27(3):1678-1694.
[24] Kang G Z.A visco-plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation[J].Mech Mater,2004,36(4):299-312.
[25] Kang G Z.Uniaxial time-dependent ratcheting of SiCp/6061Alalloy composites at room and high temperature[J].Comp Sci Tech,2006,66(10):1418-1430.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%