欢迎登录材料期刊网

材料期刊网

高级检索

设计制备了高比强泡沫铝合金中空层合圆管,测出了圆管的压缩应力-应变(σ-ε)曲线并研究了其性能.圆管与泡沫铝合金的压缩σ-ε曲线相似,但有较小波动;圆管的弹性模量与面板的弹性模量成线性关系,线性系数为η+α(0.5η2+0.3η)(1-η);泡沫铝合金中空层合圆管的紧实应变(εD)可用泡沫铝合金的εD表示.由σ-ε曲线计算出圆管的能量吸收性能,发现其吸能能力(W)大约比铝合金面板和泡沫铝合金的吸收能量之和高60%,吸能效率(E)高于60%.泡沫铝合金中空层合圆管具有轻质(ρ<1)特性,但是其压缩比强度σ/ρ和压缩比刚度E/ρ是泡沫铝合金相应参数的3倍.

参考文献

[1] M.F.Ashby, A.G.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson, H.N.G.Wadley, Metal.Metal Foams,(U.S.A., Butterworth-Heinemann, 2000) p.1, p.53, p.157~161
[2] L.J.Gibson, M.F.Ashby, Cellular Solids-Structures and Properties, Second Edition, (Great Britain, Cambridge University Press, 1999) p.5
[3] WU Zhaojin, HE Deping, Changes in porosity of Foamed Al during Solidification, Chinese Science Bulletin,45(18), 1667(2000)
[4] Yang Donghui, He Deping, Porosity of Porous Al Alloy, Science in China (B), 44(4), 411(2001)
[5] John Banhart, M.F.Ashby, N.A.Fleck, in Cellular Metals and Metal Foaming Technology, Edited by John Banhart, M.F.Ashby, N.A.Fleck (Germany, Verlag MIT, 2001) p.37
[6] John Banhart, M.F.Ashby, N.A.Fleck, in Metal Foams and Porous Metal Structures, Edited by John Banhart, M.F.Ashby, N.A.Fleck (Germany, Verlag MIT, 1999) p.313
[7] WU Zhaojin(吴照金),HE Deping(何德坪),Research on the Deformation and the Energy Absorption of Cellular Aluminium Under Compression(胞状铝的压缩形变和吸能性能研究),Journal of APPlied Science(应用科学学报),19(40),357(2001)
[8] ZHENG Mingjun,HE Deping,DAI Ge,Additional force field inthe cooling process of the cellular Al alloy,Sciencein China(B),45(6),598(2002)
[9] ZHENG Mingjun(郑明军),HE Deping(何德坪),Deformation and Energy Absorption Characteristic of High Strength Cellular Al Alloy(新型轻质高比强胞状铝合金压缩及能量吸收性能),Journal of material research(材料研究学报),16(5),473(2002)
[10] WANG Bin(王斌),HE Deping(何德坪),SHU Guangji(舒光冀),Compressive Property and Energy Absorption of Foamed Al Alloy(泡沫Al合金的压缩性能及其能量吸收),ACTA Metallurgica SINICA(金属学报),36(10),1037(2000)
[11] Kathryn A. Dannemann, James Lankford Jr., High strain rate compression of closed-cell aluminium foams,Materials Science and Engineering A, 293, 157(2000)
[12] A.Paul, U.Ramamurty, Strain rate sensitivity of a closed-cell aluminum foam, Materials Science and Engineering A, 281, 1(2000)
[13] H.Kanahashi, T.Mukai, Y.Yamada, K.Shimojima, M.Mabuchi, T.G.Nieh, K.Higashi, Dynamic compression of an ultra-low density aluminium foam, Materials Science and Engineering A, 280, 349(2000)
[14] N.A.Fleck, I.Sridhar, End compression of sandwich columns, Composites Part A: applied science and manufacturing, 33, 353(2002)
[15] A.E.Simone, L.J.Gibson, Efficient structural components using porous metals, Materials Science and Engineering A, 229, 55(1997)
[16] J.W.Hutchinson, M.Y.He, Buckling of cylindrical sandwich shells with metal foam cores, International Journal of Solids and Structures, 37, 6777~6794(2000)
[17] Wan Zhimin(万志敏),Gui Liangjin(桂良进),Xie Zhimin(谢志民),Du Xingwen(杜星文),Energy Absorption Ability of Cylindrical Composite Shells(复合材料圆柱壳的能量吸收能力分析),Journal of Harbin Institute of Technology(哈尔滨工业大学学报),31(3),80(1999)
[18] A.McIntyre, G.E.Anderton, Fracture Properties of a Rigid Polyurethane Foam Over a Range of Densities Polymer, 20, 247(1979)
[19] M.F.Ashby, The Mechanical Properties of Cellular Solids, Metallurgical Transaction A, 14A, 1755(1983)
[20] J.Miltz, G.Gruenbaum, Evaluation of crushioning properties of plastic foams from compressive measurements [J]. Polym Eng Sci,, 21, 1010(1981)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%