模拟计算了半导体材料CdZnTe布里奇曼法单晶体生长过程,分析了熔体的过热温度、坩埚侧面强化换热以及坩埚加速旋转(ACRT)等因素对结晶界面的形态和晶体组分偏析的影响.结果表明:当熔体的过热温度减小时,熔体中自然对流的强度显著降低,固液界面的凹陷深度有所增加,晶体的轴向等浓度区显著加长,而晶体组分的径向偏析明显增大.坩埚的侧面强化换热增加了自然对流强度,也增大了固液界面的凹陷,但是对溶质成分的偏析影响较小.坩埚加速旋转引起的强迫对流强度远大于自然对流,显著增大了固液界面的凹陷,使熔体中的溶质分布成为均一的浓度场,显著减小了晶体组分的径向偏析,增加了晶体组分的轴向偏析.
参考文献
[1] | D.H.Kim, R.A.Brown, Models for Convection and Segregation in the Growth of HgCdTe by the Vertical Bridgman Method, J.Cryst. Growth, 96, 609(1989) |
[2] | D.H.Kim, R.A.Brown, Modeling of the Dynamics of HgCdTe Growth by the Vertical Bridgman Method,J.Cryst. Growth, 114, 411(1991) |
[3] | C.Pafceniuk, F.Weinberg, I.V.Samarasekera, Measured Critical Resolved Shear Stress and Calculated Temperature and Stress Fields during Growth of CdZnTe, J.Cryst. Growth, 119, 61(1992) |
[4] | S.Kuppurao, S.Brandon, J.J.Derby, Modeling the Vertical Bridgman Growth of Cadmium Zinc Telluride I.Quasi-Steady Analysis of Heat Transfer and Convection, J.Cryst. Growth, 155, 93(1995) |
[5] | C.Martinez-Tomas, V.Munoz, R.Triboulet, Heat Transfer Simulation in a Vertical Bridgman CdTe Growth Configuration, J.Cryst.Growth, 197, 435(1999) |
[6] | C.Martinez-Tomas, V.Munoz, CdTe Crystal Growth Process by Bridgman Method: Numerical Simulation,J.Cryst. Growth, 222, 435(2001) |
[7] | R.Cerny, A.KalbáC, P.Prikryl, Computational Modeling of CdZnTe Crystal Growth from the Melt, Computational Materials Science, 17(1), 34(2000) |
[8] | R.Cern, P. Jelinek, P.Prikryl, Computational Modeling of Turbulent Melt Flow in CdZnTe Crystal Growth,Computational Materials Science, 25(3), 316(2002) |
[9] | T.S.Lee, S.B.Lee, J.M.Kim, Vertical Bridgman Techniques to Homogenize Zinc Composition of CdZnTe Substrates, J. Electronic Materials, 24, 1057(1995) |
[10] | P.Capper, Bridgman Growth of CdxHg1-xTe-A Review, Prog. Cryst. Growth and Gharact., 19,259(1989) |
[11] | P. Capper, A Review of Impurity Behavior in Bulk and Epitaxial of Hg1-xCdxTe, J.Vac. Sci. Techonol. B,9(3), 1667(1991) |
[12] | P. Capper, J.E.Harris, E.O'Keefe, C.L.Jones, C.K.Ard, P. Mackett, D.Dutton, Bridgman Growth and Assessment of CdTe and CdZnTe Using the Accelerated Crucible Rotation Technique, Materials Science and Engineering B, 16(1~3), 29(1993) |
[13] | LIU Xiaohua, JIE Wanqi, ZHOU Yaohe, Numerical Analysis on Hg1-xCdxTe Growth by ACRT-VBM,J.Cryst. Growth, 209, 751(2000) |
[14] | A.Yeckel, J.J.Derby, Effect of Accelerated Crucible Rotation on Melt Composition in High-Pressure Vertical Bridgman Growth of Cadmium Zinc Telluride, J.Cryst. Growth, 210, 734(2000) |
[15] | B.D.Nichols, C.W.Hirt, R.S.Hotchkiss, SALO-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Surface, Los Alamos Scientific Laboratory Report LA-8335, August 1980. |
[16] | C.W.Hirt, B.D.Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,J.Comput.Phys., 39, 201(1981) |
[17] | LIU Juncheng, JIE Wanqi, Modeling Ekman Flow during the ACRT Process with Marked Particles, Journal of Crstal Growth, 183, 140(1997) |
[18] | LIU Junoheng(刘俊成),JIE Wanqi(介万奇),ZHOU Yaohe(周尧和),Numerical Study on Factors Affecting Convection during ACRT Process ACRT(过程流场影响因素的数值研究),Chinese Journal of Materials Resaerch(材料研究学报),11,8(1997) |
[19] | S.Sen, W.H.Konkel, S.J.Tighe, Crystal Growth of Large-Area Single-Crystal CdTe and CdZnTe by the Computer-Controlled Vertical Modified-Bridgman Process, J.Cryst. Growth, 86, 111(1988) |
[20] | P. Rudolph, M.Muhlberg, Basic Problems of Vertical Bridgman Growth of CdTe, Mater. Sci. Eng. B, 16, 8(1993) |
[21] | N.Aslam, E.Jones, T.C.Q.Noakes, The Diffusion of Zinc in Cadmium Telluride, J.Cryst.Growth, 117,249(1992) |
[22] | LIU Juncheng, JIE Wanqi, ZHOU Yaohe, Numerical Simulation of the Convection during ACRT, Progress in Natural Science, 7(2), 215(1997) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%