建立了高温绝热毡有效热导率的数值计算模型,分析了温度和压力对传热机制的影响.用高真空平板型石墨加热炉测量了纤维绝热毡平均温度高达860℃时的有效热导率,实验结果与理论计算吻合得很好.结果表明,当温度较低(<400℃)时,高温隔热毡的固体传导在总体传热中占主导地位;当温度较高时(>700℃),无论环境压力高低,辐射都成为材料内部主导的传热方式;当环境压力小于200 Pa时,可忽略气体传导的影响.
参考文献
[1] | M.L.Blosser,R.R.Chen,I.H.Schmidt,AIAA 2002-0504(2002) |
[2] | J.D.Verschoor,P.Greebler,N.J.Manville,Journal of Heat Transfer,74,961(1952) |
[3] | J.Marschall,AIAA 2001-2822(2001) |
[4] | S.D.Williams,D.M.Curry,Prediction of Rigid Silica Based Insulation Conductivity Using Morphological Data,American Society of Mechanical Engineers,Heat Transfer Division,(Publication) HTD,Atlanta,Georgia,USA,Publ by ASME,New York,NY,USA,249,51(1993) |
[5] | T.W.Tong,Q.S.Yang,C.L.Tien,Journal of Heat Transfer,43(81),(1981) |
[6] | C.F.Matt,M.E.Cruz,AIAA 2001-2968(2001) |
[7] | S.C.Lee,G.R.Cunnington,Journal of Thermophysics and Heat Transfer,44(2),121(2000) |
[8] | Kamran Daryabeigi,Design of High Temperature MultiLayer Insulation for Reusable Launch Vehicles,Ph.D.Dissertation,University of Virginia,Charlottesville,VA,(2000) |
[9] | Kamran Daryabeigi,Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles.NASA/TM-1999-208972,(1999) |
[10] | Kamran Daryabeigi,AIAA 99-1044(1999) |
[11] | Kamran Daryabeigi,Aerodynamic Heating,AIAA 2001-2834(2001) |
[12] | Kamran Daryabeigi,AIAA 2002-3332 (2002) |
[13] | MA Zhonghui,SUN Qin,Journal Of Astronautics,24(5),543(2003)(马忠辉,孙秦,宇航学报,24(5),543(2003)) |
[14] | BAI Dan,FAN Xuji,Journal of Nanjing University of Aeronautics & Astronautics,37(4),403(2005)(白丹,范绪箕,南京航空航天大学学报,37(4),403(2005)) |
[15] | XIE Weihua,ZHANG Boming,DU Shanyi,Acta Aeronautica Et Astronautic A Sinica,27(4),650(2006)(解维华,张博明,杜善义,航空学报,27(4),650(2006)) |
[16] | C.C.Poteet,H.A.Khajeel,S.Y.Hsu,AIAA 2002-0505(2002) |
[17] | Kamran Daryabeigi,J.R.Knutson,J.G.Sikora,NASA/TM-2002-211734(2002) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%