欢迎登录材料期刊网

材料期刊网

高级检索

建立了高温绝热毡有效热导率的数值计算模型,分析了温度和压力对传热机制的影响.用高真空平板型石墨加热炉测量了纤维绝热毡平均温度高达860℃时的有效热导率,实验结果与理论计算吻合得很好.结果表明,当温度较低(<400℃)时,高温隔热毡的固体传导在总体传热中占主导地位;当温度较高时(>700℃),无论环境压力高低,辐射都成为材料内部主导的传热方式;当环境压力小于200 Pa时,可忽略气体传导的影响.

参考文献

[1] M.L.Blosser,R.R.Chen,I.H.Schmidt,AIAA 2002-0504(2002)
[2] J.D.Verschoor,P.Greebler,N.J.Manville,Journal of Heat Transfer,74,961(1952)
[3] J.Marschall,AIAA 2001-2822(2001)
[4] S.D.Williams,D.M.Curry,Prediction of Rigid Silica Based Insulation Conductivity Using Morphological Data,American Society of Mechanical Engineers,Heat Transfer Division,(Publication) HTD,Atlanta,Georgia,USA,Publ by ASME,New York,NY,USA,249,51(1993)
[5] T.W.Tong,Q.S.Yang,C.L.Tien,Journal of Heat Transfer,43(81),(1981)
[6] C.F.Matt,M.E.Cruz,AIAA 2001-2968(2001)
[7] S.C.Lee,G.R.Cunnington,Journal of Thermophysics and Heat Transfer,44(2),121(2000)
[8] Kamran Daryabeigi,Design of High Temperature MultiLayer Insulation for Reusable Launch Vehicles,Ph.D.Dissertation,University of Virginia,Charlottesville,VA,(2000)
[9] Kamran Daryabeigi,Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles.NASA/TM-1999-208972,(1999)
[10] Kamran Daryabeigi,AIAA 99-1044(1999)
[11] Kamran Daryabeigi,Aerodynamic Heating,AIAA 2001-2834(2001)
[12] Kamran Daryabeigi,AIAA 2002-3332 (2002)
[13] MA Zhonghui,SUN Qin,Journal Of Astronautics,24(5),543(2003)(马忠辉,孙秦,宇航学报,24(5),543(2003))
[14] BAI Dan,FAN Xuji,Journal of Nanjing University of Aeronautics & Astronautics,37(4),403(2005)(白丹,范绪箕,南京航空航天大学学报,37(4),403(2005))
[15] XIE Weihua,ZHANG Boming,DU Shanyi,Acta Aeronautica Et Astronautic A Sinica,27(4),650(2006)(解维华,张博明,杜善义,航空学报,27(4),650(2006))
[16] C.C.Poteet,H.A.Khajeel,S.Y.Hsu,AIAA 2002-0505(2002)
[17] Kamran Daryabeigi,J.R.Knutson,J.G.Sikora,NASA/TM-2002-211734(2002)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%