欢迎登录材料期刊网

材料期刊网

高级检索

在超临界CO2(SC-CO2)循环萃取条件下制备PLA/TCP/Collagen(PTC)多孔组织工程支架材料,研究了胶原含量对支架材料的总孔隙率、开孔率、孔洞形态和力学性能的影响,以及胶原纤维在支架材料中的分布.结果表明:用SC-CO2反复循环萃取法制备的PTC支架材料开孔率可达到82.81%,比不加胶原的PLA/TCP支架高约25%;孔径为200-500 μm,孔洞之间出现重要的"隧道"结构;胶原纤维在SC-CO2反复循环萃取法处理后保持着网络形态,在支架中分布均匀;胶原纤维加入使支架材料的压缩模量和压缩强度明显下降.

参考文献

[1] L.E.Freed,G.Vunjak-Novakovic,R.J.Biron,D.B.Eagles,D.C.Lesnoy,S.K.Barlow,Biodegradable polymer scaffolds for tissue engineering,Biotechnology,12,689(1994)
[2] CHEN Jida,CUI Lei,LIU Wei,CAO Yilin,The development on solvent casting/particulate leaching,China Biotechnology,23(4),32(2003)(陈际达,崔磊,刘伟,曹谊林,溶剂浇铸/颗粒沥滤技术制备组织工程支架材料,中国生物工程杂志,23(4),32(2003))
[3] K.Whang,T.K.Goldstick,K.E.Healy,A biodegradable polymer scaffold for delivery of osteotropic factors,Biomaterials,21,2545(2000)
[4] M.Honda,T.Yada,M.Ueda,K.Kimata,Cartilage formation by cultured chondrocytes in a new sca.old made of poly(L-lactidee-caprolactone) sponge,J.Oral Maxillofac.Surg.,58,767(2000)
[5] C.J.Chuong,Y.C.Fung,Three-dimensional stress distribution in arteries,J.Biomech.Eng.,105,268(1983)
[6] K.Takamizawa,K.Hayashi,Strain energy density function and uniform strain hypothesis for arterial mechanics,J Biomechanics,20,7(1987)
[7] A.Park,B.Wu,L.G.Griffith,Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion,J.Biomater.Sci.Polym.Ed.,9,89(1998)
[8] GAO Jianping,MA Penggao,YU Jiugao,YAO Kangde,Tissue engineering and biodegradable macromolecular scaffold,Polymer Bulletin,4,89(2000)(高建平,马朋高,于九皋,姚康德,组织工程与生物可降解高分子骨架,高分子通报,4,89(2000))
[9] G.R.D.Evans,K.Brandt,M.S.Widmer,L.Lu,R.K.Meszlenyi,P.K.Gupta,In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration.Biomaterials,20,1109(1999)
[10] D.J.Mooney,D.F.Baldwin,Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents,Biomaterials,17(14),1417(1996)
[11] M.H.Sheridan,L.D.Shea,D.J.Mooney,Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery,Journal of Controlled Release,64,91(2000)
[12] XING Yubin,LI Lihua,ZHOU Changren,PLA/TCP porous scaffolds for tissue engineering fabricated by repeatedly cycling extraction with supercritical CO2,Journal of Functional Materials Contents,36(12),1909(2005)(邢禹彬,李立华,周长忍,超临界CO2反复循环萃取法制备PLA/TCP多孔组织工程支架材料,功能材料,36(12),1909(2005))
[13] ZHANG Run,DENG Zhengxing,LI Lihua,ZHOU Changren,Preparation of porous PLA scaffold materials by supercritical CO2 fluid technique,Chinese Journal of Materials Research,17(6),665(2003)(张润,邓政兴,李立华,周长忍,用超临界CO2法制备聚乳酸三维多孔支架材料,材料研究学报,17(6),665(2003))
[14] Robin A.Quirk,Supercritical fluid technologies and tissue engineering scaffolds,Current Opinion in Solid State and Materials Science,8,313(2004)
[15] ZHU Meixiang,MU Changdao,LIN Wei,SHI Zongjie,Advantage of collagen as biomaterials and its application,Chemical World,3,161(2003)(朱梅湘,穆畅道,林炜,史宗洁,胶原作为生物医学材料的优势与应用,化学世界,3,161(2003)
[16] L.D.Harris,B.S.Kim,D.J.Mooney,Open pore biodegradable matrices formed with gas foaming,Biomed.Mater.Res.,42(3),396(1998)
[17] A.Tampieri,G.Celotti,S.Sprio,A.Delcogliano,S.Franzese,Porosity-graded hydroxyapatite ceramics to replace natural bone,Biomaterials,22,1365(2001)
[18] S.Lowell,J.E.Shields,Powder Surface Area and Porosity,(New York,Chapman and Hall,1984) p.72
[19] John A.Dean,Lange's handbook of chemistry (13th ed.)(迪安J.A.主编,尚久方,操时杰,辛无名,郑飞勇译,兰氏化学手册,第十三版中文版(北京,科学出版社,1991))
[20] XING Yuqing,WU Guiguo,XING Jun,Chemosynthesis of perfectly degradable plastics polyactic acid,Engingeering Plastics Application,30(12),57(2002)(邢玉清,吴贵国,邢军,化学合成全降解塑料-聚乳酸,工程塑料应用,30(12),57(2002))
[21] V.Charulatha,A.Rajaram,Influence of different crosslinking treatments on the physical properties of collagen membranes,Biomaterials,24,759(2003)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%