欢迎登录材料期刊网

材料期刊网

高级检索

对比研究了不同强度中碳TRIP钢的旋转弯曲疲劳性能和疲劳裂纹扩展速率特征.结果表明,对于1100 MPa和1300 MPa两种强度级别,等温淬火(AT)处理试样的旋转弯曲疲劳强度均高于淬火回火(QT)处理的试样.两种强度级别的AT样的疲劳极限与抗拉强度之比均高达0.56,明显高于QT样的0.51-0.52,同时,AT样的疲劳裂纹扩展速率均明显低于QT样.此外,实验钢的抗拉强度从1100 MPa级提高到1300 MPa级,AT样与QT样的疲劳强度和疲劳裂纹扩展速率之间的差异均缩小.

参考文献

[1] H.E.Frankel,J.A.Benett,W.A.Pennington,Fatigue properties of high strength steels,Trans.ASM,52,257(1960)
[2] S.Song,K.Sugimoto,S.Kandaka,A.Fautamura,M.Kobayashi,S.Masuda.Effect of prestraining on high cycle fatigue strength of high strength low alloy TRIP steels.Soc.Mat.Sci.,Japan,50(10),1091(2001)
[3] K.Sugimoto,S.Song,K.Inoue,M.Kobayashi,S.Masuda,Effect of prestraining on low cycle fatigue properties of low alloy TRIP steels,Soc.Mat.Sci.Japan,50(6),657(2001)
[4] S.Song,S.Kandaka,K.Sugimoto,M.Kobayashi,S.Masuda,Fatigue properties of low alloy TRIP sheet steels,CAMP-ISIJ.,13 622(2000)
[5] K.Sugimoto,M.Kobayashi,K.Inoue,S.Masuda,Fatiguehardening behaviour of TRIP-aided bainitic steels.ISIJ international,85(11),72(1999)
[6] S.Song,K.Sugimoto,S.Kandaka,A.Fautamura,M.Kobayashi,S.Masuda,Effect of prestraining on high cycle fatigue strength of high-strength low alloy TRIP-aided steels,Materials Science Research International,9(3),223(2003)
[7] K.Sugimoto,M.Kobayashi,K.Inoue,Sun Xiaodong,T.Soshiroda,Fatigue strength of TRIP-aided bainitic sheet steels,Testu-to-Hagane,84(8),19(1998)
[8] G.B.Olson,R.Chait,M.Azrin,R.A.Gagne,Fatigue strength of TRIP steels,Metallurgical Transactions A.,11A(6),1069(1980)
[9] s.Yasuki,K.Sugimoto,M.Kobayashi,S.Hashimoto,Low cycle fatigue-hardening of TRIP-aided dual-phase steels.J.Japan Inst.Metals,54(12),1350(1990)
[10] T.Muramatsu,T.Hojo,K.Sugimoto,S.Ikeda,Fatigue strength of ultra high strength TRIP-aided ferrous steels with bainitic ferrite matrix,CAMP-ISIJ.,17,1343(2004)
[11] E.Girault,P.Jacques,P.Harlet,K.Mols,J.V.Humbeeck,E.Aernoudt,F.Delannay,Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels,Materials Characteristic,40,111(1998)
[12] Y.Tomita,K.Morioka,Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel,Materials Characterization,38,243(1997)
[13] A.Basuki,E.Aernoudt,Effect of deformation in the intercritical area on the grain refinement of retained austenite of 0.4C TRIP steel,Scripta Materialia,40(9),1003(1999)
[14] BAN Lili,HUI Weijun,YONG Qilong,WENG Yuqing,Effect of retained austenite on the fatigue property in medium-carbon TRIP steel,Chinese Journal of Materials Research,21(Suppl),196(2007)(班丽丽,惠卫军,雍岐龙,翁宇庆,残余奥氏体对中碳TRIP钢疲劳性能的影响,材料研究学报,21(Suppl),196(2007))
[15] I.B.Timokhina,P.D.Hodgson,E.V.Pereloma,Effect of microstructure on the stability of retained anstenite in transformation-induced-plasticity steels,Metallurgical and Materials Transactions A,35A(8),2331(2004)
[16] A.Z.Hanzaki,P.D.Hodgson,S.Yue,Retained anstenite characteristics in thermomechanically processed siam transformation-induced Plasticity Steels,Metallurgical and Materials Transactions A,28A(11),2405(1997)
[17] SUN Peng,LI Lin,FU Renyu,Wei Xicheng,Dynamic tensile properties and retained anstenite transformation in HSLA-TRIP steel,Iron and Steel,39(10),63(2004)(孙鹏,李麟,符仁钰,韦习成,HSLA-TRIP钢动态拉仲性能和残余奥氏体转变,钢铁,39(10),63(2004))
[18] S.D.Antolovich,A.Saxena,A model for fatigue crack propagation,Engineering Fracture Mechanic,7,649(1975)
[19] GAO Huilin,TAN Yuxun,WANG Xiaotian,Strain induced martensitic transformation in fatigue crack tip zone for an ultra-high strength steel,Acta Metallurgica Sinica,24(1),A17(1988)(高惠临,谈育煦,手笑天,超高强度钢疲劳塑性区内的应变诱发马氏体相变,金属学报,24(1),A17(1988))
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%