将Mn-Si-Cr系中碳钢在过冷奥氏体状态下进行低速率变形,变形促进先共析铁索体转变,但未见层状珠光体形成.铁素体在奥氏体晶界和晶内形核,以近似等轴状长大、交联,并分割奥氏体,形成富碳奥氏体区.随着变形量的增大,铁素体可在富碳奥氏体区内部继续形核长大并交联,导致富碳奥氏体区不断被分割且碳浓度升高,当碳浓度足够高时,一次析出球状碳化物可在富碳奥氏体区边界处形成,尺寸为0.5-1μm;变形过程中铁素体的动态回复和再结晶导致碳原子从Cottrell气团中逸出,在铁素体内部形成几十纳米的二次析出球状碳化物.
An appropriate deformation with low strain rate was applied to a Mn-Si-Cr medium carbon steel at undercooled austenite state. The deformation promotes the formation of pro-eutectoid ferrite, but no lamellar pearlite was observed during deformation. The ferrites nucleate at the grain boundary of austenite and inside the austenite grains, grow in nearly equiaxial shape, and finally divide austenite and connect with one another, leading to the formation of carbon-rich austenite zones. With the increase of strain, ferrites can continue to nucleate inside carbon-rich austenite zones, grow and connect so that the carbon-rich austenite zones are divided continuously and their carbon concentration becomes higher. When the carbon concentration is enough high, the prime spheroidized carbides with 0.5-1 μm in diameter begin to precipitate at the edge of carbon-rich austenite zones. The dynamic recovery and recrystallization of ferrite during deformation process make carbon atoms escape from the Cottrell atmosphere, resulting in precipitation of the secondary spheroidized carbides with size of several decade nanometers within ferrite grains.
参考文献
[1] | Sun Z Q,Yang W Y,Qi J J,Hu A M.Mater Sci Eng,2002; A334:201 |
[2] | Qi J J,Yang W Y,Sun Z Q.Acta Metall Sin,2002; 38:897(齐俊杰,杨王玥,孙祖庆.金属学报,2002;38:897) |
[3] | Huang Q S,Li L F,Yang W Y,Sun Z Q.Acta Metall Sin,2007; 43:724(黄青松,李龙飞,杨王玥,孙祖庆.金属学报,2007;43:724) |
[4] | Hodgson P D,Hickson M R,Gibbs R K.Scr Mater,1999; 40:1179 |
[5] | Hurley P J,Hodgson P D,Muddle B C.Scr Mater,1999;40:433 |
[6] | Hickson M R,Hurley P J,Gibbs R K,Kelly J L,Hodgson P D.Metall Mater Trans,2002; 33A:1019 |
[7] | Choi J K,Seo B H,Lee J S,Um K K,Choo W Y.ISIJ Int,2003; 43:746 |
[8] | Chen G A,Yang W Y,Sun Z Q.Acta Metalt Sin,2007; 43:27(陈国安,杨王玥,孙祖庆.金属学报,2007;43:27) |
[9] | Lee Y H; Kwon J S; Lee D L.Mater Sci Forum,2007; 539-543:4267 |
[10] | Zheng C W,Xiao N M,Hao L H,Li D Z,Li Y Y.Acta Mater,2009; 57:2956 |
[11] | Yang L,Fang H S,Meng Z H.Acta Metall Sin,1992; 28:143(杨柳,方鸿生,孟志和.金属学报,1992;28:143) |
[12] | Li J,Sun F Y.Acta Metall Sin,1990; 26:A396(李箭,孙福玉.金属学报,1990;26:A396) |
[13] | Zhou Y,Wu G H.Materials AnaLysis and Testing Technology-X-ray Diffraction and Electron Microanalysis of Materials.Harbin:Harbin Institute of Technology Press,2000:92(周玉,武高辉.材料分析测试技术--材料X射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社,2000:92) |
[14] | Chen G A,Yang W Y,Sun Z Q,Zhang X Y.Acta Metall Sin,2007; 43:785(陈国安,杨王玥,孙祖庆,张湘义.金属学报,2007;43:785) |
[15] | Wilde J,Cerezo A,Smith G D W.Scr Mater,2000; 43:39 |
[16] | Song R,Ponge D,Raabe D,Kaspar R.Acta Mater,2005; 53:845 |
[17] | Shin D H,Kim Y S,Lavernia E J.Acta Mater,2001; 49:2387 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%