研究了粉末冶金镍基高温合金FGH97在650℃,30-980 MPa,1 Hz实验条件下的低周疲劳断口的宏观及微观特征,裂纹源的类型及其形貌特征,以及裂纹源的位置,缺陷类型、形状和尺寸对低周疲劳寿命的影响.结果表明,在本次实验条件下该合金的低周疲劳寿命均超过了5000 cyc;统计得出,低周疲劳断口裂纹源在表面的试样占23%,在亚表面的占47%,在试样内部的占30%;裂纹源分平台、粉末颗粒、夹杂物3种类型,其中平台类型约占5%,粉末颗粒间断裂占15%,夹杂物占80%.由统计分析和计算得出,不同类型裂纹源对疲劳寿命的影响程度不同:夹杂物最严重,其次为异常粉末颗粒,再次为局部塑性变形.
Powder metallurgy (P/M) nickel-based superalloy FGH97 has been researched in recent 10 years in China which is particularly suitable for producing aircraft engine disks and shafts etc.. In the range of operating temperature, the resistance to low cycle fatigue (LCF) of P/M nickelbased superalloy is one of the most important performances. In this paper the fracture features of LCF on P/M nickel-based superalloy FGH97 were investigated. The study focused on macroscopic and microscopic features of LCF fractures under 650 ℃, 980-30 MPa, 1 Hz test conditions by optical microscope and SEM. The types and morphologies of failure origins were observed. The effects of failure origin location and type, shape and size of defects located in fracture on LCF life were discussed. The results show that LCF life of all the specimens of FGH97 is over 5000 cyc under above test conditions.Statistically, 23% of LCF failure origins are on sample surface, 47% near surface and 30% in interior of samples. There are statistically three types of the LCF failure origins in this alloy: 5% of grain facet, 15% of powder particle and 80% of inclusion. Based on the statistical analysis and theoretical calculation of the influences of three types of LCF failure origins on LCF life, it can be concluded that the LCF life can be more severely affected by the inclusion than by the abnormal powder particle and partial plastic deformation.
参考文献
[1] | Wang R G,Gao K H.New Technology of Aero Engine,Beijing:Aero Industry Press,2003:114(王如根,高坤华.航空发动机新技术,北京:航空工业出版社,2003:114) |
[2] | Zhang W.Aero Engine,Beijing:Aero Industry Press,2008:428(张伟.航空发动机,北京:航空工业出版社,2008:428) |
[3] | Garibov G S,Sizova L N,Noznicki Y A,Kolotnykov M E,Buslafski L S.Technol Light Alloy,2002; (4):106(外文无法识别,2002; (4):106) |
[4] | John C H.In Gerard R,ed.,Proceedings of the 2005 International Conference on Hot Isostatic Pressing,Paris:SFM Press,2005:3 |
[5] | Garibov G S.In Gerard R,ed.,Proceedings of the 2005 International Conference on Hot Isostatic Pressing,Paris:SFM Press,2005:86 |
[6] | Zhang Y.In Gan Y,Tian Z L,Dong H,Feng D,Wang X L,eds.,China Mater Engineering Canon Vol.2 Iron and Steel Mater Engineering(1),Beijing:Chemical Industry Press,2006:785(张莹.见:干勇,田志凌,董瀚,冯涤,王新林主编,中国材料工程大典第二卷钢铁材料工程(上),北京:化学工业出版社,2006:785) |
[7] | Brian M T.In Stephen J M ed.,Proceedings of the 2008 International Conference on Hot Isostatic Pressing,California:IHC Press,2008:3 |
[8] | Fainblon A C.In:koliagin H I ed.,Powder Metallurgy No.5.Moscow:VILS Press,1989:277(外文无法识别,1989:277) |
[9] | Shamblen C E,Chang D R.Metall Trans,1985; 16B:775 |
[10] | Huron E S,Roth P G.In Kissinger R D,Deye D J,Anton D L eds.,Superalloys 1996,PA:TMS,1996:359 |
[11] | Zhang Y,Zhang Y W,Son P S.Powder Metal Ind,2004;14(2):1(张莹,张义文,宋璞生.粉末冶金工业,2004;14(2):1) |
[12] | Belzofski N Z,Fainblon A C,Volonbev N A.Metal,1982;(6):146(外文无法识别.1982; (6):146) |
[13] | Fainblon A C,Berzofsky N Z,Savin V N.Metall HeatTreat Met,1993; (6):32(外文无法识别1993; (6):32) |
[14] | Zhang Y,Zhang Y W,Liu M D,Zhang N.In:Zhong Z Y eds.,Proc 11th Syrup on SuperaUoys,Beijing:Metallurgy Industry Press,2007:545(张莹,张义文,刘明东,张娜.仲增墉主编,第十一届高温合金年会论文集,北京:冶金工业出版社,2007:545) |
[15] | Zhang Y,Zhang Y W,Zhang N,Jia J.J Aero Mater,2008; 28(6):3(张莹,张义文,张娜,贾建.航空材料学报,2008;28(6):3) |
[16] | Zhang J S.Material Deformation and Rupture at High Temperature,Beijing:Science Press,2007:401(张俊善.材料的高温变形与断裂,北京:科学出版社,2007:401) |
[17] | Chen G L.Superalloys,Beijing:Metallurgy Industry Press,1988:122(陈国良.高温合金学,北京:冶金工业出版社,1988:122) |
[18] | Cui Y X,Wang C L.Analyse of Metal Fracture Morphology,Harbin:Harbin Industry University Press,2006:125(崔约贤,王长利.金属断口分析,哈尔滨:哈尔滨工业大学出版社,2006:125) |
[19] | Guo J T.Superalloy Mater(1),Beijing:Science Press,2008:494(郭建亭,高温合金材料学(上册),北京:科学出版社,2008:494) |
[20] | Huang K Z,Xiao J M.Damnify Failure Mechanism and Macro Mechanics Theory of Mater,Beijing:Tsinghua University Press,2000:160(黄克智,肖纪美.材料的损伤断裂机理和宏观力学理论,北京:清华人学出版社,2000:160) |
[21] | Liu X M.Microstructure and Mechanical Properties of Engineering Mater,Hefei:Technology University China Press,2003:145(刘孝敏.工程材料的微观结构和力学性能,合肥:中国科学技术大学出版社,2003:145) |
[22] | Miao J S,Pollck T M,Jones J W.In Roger C R,Kenneth A G eds.,Superalloys 2008,PA:TMS,2008:589 |
[23] | Xu X H,Feng G S.Technology Manual of Fireresisting Mater,Beijing:Metallurgy Industry Press,2001:133(许晓海,冯改山.耐火材料技术手册,北京:冶金工业出版社,2001:133) |
[24] | Xiong B K,Yang X M,Luo F C,Zhang W.Application of Zr,Hf and Compound,Beijing:Metallurgy Industry Press,2002:73(熊炳昆,杨新民,罗方承,张伟.锆铪及其化合物应用,北京:冶金工业出版社,2002:73) |
[25] | Ling J Z,Liu S H.Rupture and Fatique of Metal Material,Beijing:China Railway Publishing House,1989:214(林吉忠,刘淑华.金属材料的断裂与疲劳,北京:中国铁道出版社,1989:214) |
[26] | Zhang Y,Zhang Y W,Song P S,Zhang F G,Tao Y,Chen X C,Yang S Z.J Iron Steel Res,2003; 15(6):71(张莹,张义文,宋璞生,张凤戈,陶宇,陈希春,扬仕仲.钢铁研究学报,2003;15(6):71) |
[27] | Zhang Y,Liu M D,Zhang Y W.Powder Metall Ind,2006;16(6):1(张莹,刘明东,张义文.粉末冶金工业,2006;16(6):1) |
[28] | Zhang Y,Dong Y,Zhang Y W,Ling Q Y.Powder Metall Ind,2000; 10(6):7(张莹,董毅,张义文,林清英.粉末冶金工业,2000;10(6):7) |
[29] | Cai Z,G,Liu Y K,Wang C Z,Zheng W H.Metal Wear and Rupture,Shanghai:Shanghai Jiaotong University Press,1985:180(蔡泽高,刘以宽,王承忠,郑文龙.金属磨损与断裂,上海:上海交通人学出版社,1985:180) |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%