欢迎登录材料期刊网

材料期刊网

高级检索

将含有大量富Cu颗粒的Cu-80%Pb(质量分数)过偏晶合金在强磁场作用下进行不同温度的保温实验,研究了富Cu颗粒在液固混合区的迁移行为.结果表明,无磁场作用时,富Cu颗粒在800℃以上出现迁移而上浮,900℃以上在试样顶部形成致密的富Cu分层,颗粒尺寸及迁移速率随温度升高而增加;富Cu颗粒在迁移过程中可通过熟化长大或合并,其机制与富Cu液滴不同;富Cu颗粒群整体向上迁移,颗粒区与枝晶区有明显边界,颗粒间相互作用可使其迁移速率降低.强磁场具有降低颗粒迁移速度,抑制颗村熟化及合并的作用,降低了富Cu颗粒的偏析程度,抑制致密富Cu分层的形成.考虑颗粒间相互作用,对有无磁场作用下颗粒所受的作用力和运动终端速度进行了分析和计算.

The Cu-80%Pb(mass fraction) hypermonotectic alloy with a dense distribution of Curich particles was annealed at different temperatures under high magnetic field, the transition behavior of Cu-rich particles in solid-liquid mixture zone was investigated. The results show that, the transition behavior of Cu-rich particles occurs above 800 ℃, a compact segregation layer forms in the sample top above 900 ℃, the particle size and transition velocity increase with annealing temperature increasing.The Cu-rich particles grow and coalesce with each other during transiting, the coalescence mechanism is different from Cu-rich droplets. The cluster of Cu-rich particles float up wholly, leave a clear boundary between Cu-rich particle and Cu-rich dendrite zones, the mutual interaction between the particles makes the transition velocity decreased. The high magnetic field has effect on decreasing the transition velocity of Cu-rich particles, inhibiting the coarsening and coalescing of Cu-rich particles,which could decrease the segregation of Cu-rich particles, and inhibit the formation of compact Curich segregation layers. Based on the mutual interaction between the particles, the acting forces on the Cu-rich particles and the final velocity have been analyzed and calculated to show the influence of magnetic field.

参考文献

[1] Dhindaw B K.Stefanescu D M,Singh A K,Curreri P A.Metall Trans,1988; 19A:2839
[2] Liu Y,Guo J J,Jia J,Su Y Q,Ding H S.Acta Metall Sin,2000; 36:1233(刘源,郭景杰,贾均,苏彦庆,丁宏升.金属学报,2000;36:1233)
[3] Yang S,Liu W J,Jia J.Mater Sci Technol,2002; 10:19(杨森,刘文今,贾均.材料科学与工艺,2002;10:19)
[4] Zu D Y,Yang X H,Han X M,Wei B B.Chin J Nonferrous Met,2003; 13:328(朱定一,杨晓华,韩秀君,魏炳波.中国有色金属学报,2003;13:328)
[5] Yasuda H,Ohnaka I,Kawakami O,Ueno K,Kishio K.ISIJ Int,2003; 43:942
[6] Zhao J Z,Li H L,Wang Q L,Zhao L,He J.Acta Metall Sin,2009; 45:1344(赵九洲,李海丽,王青亮,赵雷,何杰.金属学报,2009;45:1344)
[7] Ratke L,Diefenbach S.Mate Sci Eng,1995; R15:263
[8] Zhao J Z,Li H L,Zhao L.Acta Metall Sin,2009; 45:1435(赵九洲,李海丽,赵雷.金属学报,2009;45:1435)
[9] Zhang L,Wang E G,Zuo X W,He J C.Acta Metall Sin,2008; 44:165(张林,王恩刚,左小伟,赫冀成.金属学报,2008;44:165)
[10] Xu Z M,Li T X,Zhang X P,Zhou R H.J Shanghai Jiaotong Univ,2001; 35:668(许振明,李天晓,张雪萍,周尧和.上海交通大学学报,2001;35:668)
[11] Zhong Y B,Ren Z M,Sun Q X,Jiang Z W,Deng K,Xu K D.Acta Metall Sin,2003; 39:1269(钟云波,任忠鸣,孙秋霞,江志文,邓康,徐匡迪.金属学报,2003;39:1269)
[12] Shu D,Sun B,Li K,Zhou Y.Scr Mater,2003; 48:1385
[13] Colli F,Fabbri M,Negrini F,Asai S,Sassa K.Int J Comput Math Electr Electron Eng,2003; 22:58
[14] Zhang L,Yao G C,Jiao W L.J Northeastern Univ (Nat Sci),2004; 25:682(张磊,姚广春,焦万丽.东北大学学报(自然科学版),2004;25:682)
[15] Zhang L.PhD Dissertation,Northeastern University,Shenyang,2008(张林.东北人学博士学位论文,沈阳,2008)
[16] Ratke L,Voorhees P W.Growth and Coarsening.Berlin:Springer-Verlag,2002:1
[17] Walter H U,Vreeburg J P B.Fluid Sciences and Materials Science in Space.Berlin:Springer-Verlag,1987:1
[18] Brandes E A,Brook G B.Smithells Metals Reference Book.7th Ed.,Oxford:Butterworth-Heinemann,1998:1
[19] Happel J.AIChE J,1959; 5:174
[20] Chester W.J Fluid Mech,1957; 3:304
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%