采用模拟大气腐蚀系统,利用OM,SEM,XRD和局部交流阻抗测试(LEIS)等研究了20碳钢在高湿度SO_2大气环境中腐蚀产物的形态变化和生长过程,结果表明,20碳钢表面首先生成Fe(OH)_2膜,Fe(OH)_2膜在酸性介质中发生破裂形成头部为绿色的丝状物,丝状物沿晶界腐蚀并向铁素体内生长;空气中SO_2,O_2和H_2O不断进入破裂的Fe(OH)_2膜内,导致Fe不断溶解并形成FeSO_4巢穴,FeSO_4与O_2和H-2O作用在巢穴内生成FeOOH堆积物,最后形成胞状腐蚀产物,随腐蚀时间的延长,胞状腐蚀产物增多,锈层阻抗增加,腐蚀产物层厚度不均匀;继续腐蚀,腐蚀产物变得均匀致密.SO_2含量越高,胞状物增加越快.
The evolution of corrosion products of 20 carbon steel in simulated humidity atmo sphere containing SO_2 was investigated by means of OM, SEM, XRD and localized electrochemical impedance spectrum (LEIS). Results showed ferrous hydroxide film firstly formed on the sample sur face; the film ruptured in the acidic medium, and then filaments with green heads occurred. The filaments grew along the grain boundaries and into ferrite grain. Ferrite phase was dissolved when SO_2, O_2 and H_2O continuously penetrated into the ruptured ferrous hydroxide film and sulphate nests formed. Inside the nests FeSO_4 reacted with O_2 and H_2O to form FeOOH, finally the cellular corro sion products formed. The cellular corrosion products and its impedance increased, and the rust layer became even and compact with further corrosion. Cellular products grew faster with the increasing SO_2 concentration.
参考文献
[1] | Cao C N.Natural Environmental Corrosion of Material in China.Beijing:Chemical Industry Press,2005:70(曹楚南主编,中国材料的自然环境腐蚀.北京:化学工业出版社,2005:70) |
[2] | Walter G W.Corros Sci,1991; 32:1331 |
[3] | Mansfeld F,Tsai S.Corros Sci,1980; 20:853 |
[4] | Cox A,Lyon L B.Corros Sci,1994; 36:1193 |
[5] | Gradel T E,Frankenthal R P.J Electrochem Soc,1990;137:2385 |
[6] | Neufeld A K,Cole L S.Corr08ion,1997; 53:788 |
[7] | Hou W,Liang C.Corrosion,1999; 55:65 |
[8] | Qu Q,Yan C W,Cao C N.Corros Sci Prot Technol,2001;13(suppl):432(屈庆,严川伟,曹楚南.腐蚀科学与防护技术,2001; 13(增刊):432 |
[9] | Chen H L,Wei Y.Corros Prot,2006; 6:284(陈惠玲,魏雨.腐蚀与防护,2006;6:284) |
[10] | Almeida E,Morcillo M,Rosales B,Marrocos M.Mater Corros,2000; 51:859 |
[11] | Wang Z Y,Yu G C,Han W.J Iron Steel Res,2003; 15:47(王振尧,于国才,韩薇.钢铁研究学报,2003; 15:47) |
[12] | Han W,Wang J,Wang Z Y,Yu G C,Li H X.Corros Sci Prot Technol,2003; 15:315(韩薇,汪俊,王振尧,于国才,李洪锡.腐蚀科学与防护技术,2003; 15:315) |
[13] | Yamashita M,Konishi H,Kozakura T,Mizuki J,Uchida H.Corros Sci,2005; 47:2492 |
[14] | Persson D,Leygraf L.J Electrochem Soc,1995; 142:1459 |
[15] | Kleber C,Weissenrieder J,Schreiner M,Leygraf C.Appl Surf Sci,2002; 193:245 |
[16] | Weissenrieder J,Kleber C,Schreiner M,Leygraf C.J Electrochem Soc,2004; 151:B497 |
[17] | Johnson J B,Elliott P,Winterbottom M A,Wood G C.Corros Sci,1977; 17:691 |
[18] | Arroyave C,Lopez F A,Morcillo M.Corros Sci,1995; 37:1751 |
[19] | Misawa T,Hashimoto K,Shimodaira S.Corros Sci,1994;30:283 |
[20] | Refait P,Abdelmoula M,Genin J M R.Corros Sci,1998;40:1547 |
[21] | Cai J P,Zheng Y P,Liu S R.J Chin Soc Corros Prot,1996; 16:303(蔡健平,郑逸苹,刘寿荣.中国腐蚀与防护学报,1996; 16:303) |
[22] | Weissenrieder J,Leygraf C.J Electrochem Soc,2004; 151:B165 |
[23] | Han W,Yu G,Wang Z Y,Wang J.Corros Sci,2007; 49:2920 |
[24] | Masuda H.Corrosion,2001; 57:99 |
[25] | Ma Y T,Li Y,Wang F H.Mater Chem Phys,2008; 112:844 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%