应用循环伏安与动电位极化曲线确定普通低碳钢与细晶粒钢在碱性介质(模拟混凝土孔隙液)中的钝化区域.利用计时电流法在选取的阳极极化电位下使钢筋生成稳定的钝化膜,并通过电化学阻抗谱、Mott-Schottky曲线比较了钢筋在不同阳极电位下形成的钝化膜的优劣性;其次,循环极化曲线对比分析了在有无Cl-存在时普通低碳钢与细晶粒钢钝化膜的耐蚀性.结果表明,2种钢筋的公共钝化电位区域为-0.25-+0.6 V,在选取的+0.3 V阳极极化电位下2者均能形成更稳定的钝化膜.在无Cl-存在的条件下,细晶粒钢钝化膜的稳定性与耐蚀性均略优于普通低碳钢;但有Cl-存在时,细晶粒钢抑制Cl-点蚀的能力稍弱于普通低碳钢.影响细晶粒钢钝化膜耐蚀性的主要原因是晶界数量与微量元素含量.
参考文献
[1] | Ralston K D,Birbilis N.Corrosion,2010; 66:075005 |
[2] | Afshari V,Dehghanian C.Corros Sci,2009; 51:1844 |
[3] | Pisarek M,Kedzierzawski P,Janik-Czachor M,Kurzydlowski K J.J Solid State Electrochem,2009; 13:283 |
[4] | Schino A D,Barteri M,Kenny J M.J Mater Sci,2003;38:4725 |
[5] | Freire L,Nóvoa X R,Montemor M F,Carmezim M J.Mater Chem Phys,2009; 114:962 |
[6] | Sanchez M,Gregori J,Alonso M C,Garcia-Jareno J J,Vicente F.Electrochim Acta,2006; 52:47 |
[7] | Wu Q,Liu Y,Du R G,Lin C J.Acta Metall Sin,2008;44:346(吴群,刘玉,杜荣归,林昌健.金属学报,2008;44:346) |
[8] | Sanchez M,Gregori J,Alonso C,Garcia-Jareno J J,Takenouri H,Vicente F.Electrochim Acta,2007; 52:7634 |
[9] | Freire L,Carmezim M J,Ferreira M G S,Montemor M F.Electrochim Acta,2010; 55:6174 |
[10] | Andrade C,Merino P,Novoa X R,Perez M C,Soler L.Mater Sci Forum,1995; 192-194:891 |
[11] | Ghods P,Isgor O B,McRae G,Miller T.Cem Concr Compos,2009; 31:2 |
[12] | Li L,Sagues A A.Corrosion,2002; 58:305 |
[13] | Pourasee A,Hansson C M.Cem Concr Res,2007; 37:1127 |
[14] | Zhang F,Pan J S,Lin C J.Corros Sci,2009; 51:2130 |
[15] | Jiang J H,Yuan Y S,Li F M,Wang B,Ji Y S.J Build Mater,2009; 12:523(蒋建华,袁迎曙,李富民,王波,姬永生.建筑材料学报,2009;12:523) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%