在硼酸缓冲溶液中,采用动电位极化、电化学阻抗谱(EIS)和半导体电容分析方法分别研究了Clˉ浓度(0.5-2 mol/L)和溶液温度(25-80℃)对690合金腐蚀行为的影响,并结合AFM,XPS及电位-pH图分析了钝化膜层的腐蚀产物.结果表明,不同Clˉ浓度和温度的溶液中,690合金均表现出沿晶腐蚀和二次钝化的特征.Clˉ浓度和溶液温度的提高均使690合金的自腐蚀电位下降,腐蚀电流密度增大,同时温度的升高还使690合金的点蚀电位降低,钝化区间变窄.恒电位极化相同时间,低电位的钝化区内的腐蚀产物主要为Cr,Fe的氧化物和Ni(OH)2,钝化膜较薄且致密性好,体现n型与p型共存的特征.高电位的钝化区内的腐蚀产物主要为Ni2O3,钝化膜较厚但致密性差,体现n型半导体特征.
参考文献
[1] | Gómez-Briceno D,Castano M L,Carcía M S.Nucl Eng Des,1996; 165:161 |
[2] | Dutta R S.J Nucl Mater,2009; 393:343 |
[3] | Lee K H,Cragnolino G,MacDonald D D.Corrosion,1985;41:540 |
[4] | Newman R C,Wong W P,Ezuber H,Gamer A.Corrosion,1989; 45:282 |
[5] | Chen Y Y,Chou L B,Shih H C.Mater Chem Phys,2006;97:37 |
[6] | Lu B T,Luo J L,Lu Y C.J Electrochem Soc,2007; 154:C379 |
[7] | Terachi T,Fujii K,Arioka K.J Nucl Sci Technol,2005;42:225 |
[8] | Carette F,Lafont M C,Chatainier G,Guinard L,Pieraggi B.Surf Interface Anal,2002; 34:135 |
[9] | Panter J,Viguier B,Cloué J M,Foucault M,Combrade P,Andrieu E.J Nucl Mater,2006; 348:213 |
[10] | Machet A,Galtayries A,Zanna S,Klein L,Maurice V,Jolivet P,Foucault M,Combrade P,Scott P,Marcus P.Electrochim Acta,2004; 49:3957 |
[11] | Lemire R J,McRae G A.J Nucl Mater,2001; 294:141 |
[12] | Yang I J.Corros Sci,1992; 33:25 |
[13] | Bosch R W,Féron D,Celis J P.Electrochemistry in Light Water Reactors,Reference Electrodes,Measurement,Corrosion and Tribocorrosion Issues.Cambridge,Woodhead Publishing in Materials,2007:3 |
[14] | Chen Y Y,Chou L B,Shih H C.Mater Sci Eng,2005;A396:129 |
[15] | Belo M D C,Hakiki N E,Ferreira M G S.Electrochim Acta,1999; 44:2473 |
[16] | Ries L A S,Belo M D C,Ferreira M G S,Muller I L.Corros Sci,2008; 50:676 |
[17] | Sikora E,Macdonald D D.Electrochim Acta,2002; 48:69 |
[18] | Macdonald D D,Scott A C,Wentrcek P.J Electrochem Soc,1979; 126:908 |
[19] | Zhang J Q.Electrochemical Measurement Technology.Beijing:Chemical Industry Press,2010:231(张鉴清.电化学测试技术.北京:化学工业出版社,2010:231) |
[20] | Huang J B,Wu X Q,Han E H.Corros Sci,2009; 51:2976 |
[21] | Mahfouz R,Aires F J Cadete Santos,Brenier A,Jacquier B,Bertolini J C.Appl Surf Sci,2008; 254:5181 |
[22] | Biesinger M C,Brown C,Mycroft J R.Surf Interface Anal,2004; 36:1550 |
[23] | Yamamura T,Okuyama N,Shiokaka Y,Oku M,Tomiyasu H,Tomiyasu H.J Electrochem Soc,2005; 152:B540 |
[24] | Chen C M,Aral K,Theus G J.Computer-Calculated Potential-pH Diagrams to 300 ℃,EPRI-report NP-3137,Palo Alto,CA:Electric Power Research Institute,1983 |
[25] | Sato N,Kudo K.Electrochim Acta,1974; 19:461 |
[26] | Sundararajan T,Kuroda S,Nishida K,Itagaki T,Abe F.ISIJ Int,2004; 44:139 |
[27] | Sun H,Wu X Q,Han E H.Corros Sci,2009; 51:2840 |
[28] | Grabke H J,Reese E,Spiegel M.Corros Sci,1995; 37:1023 |
[29] | Robertson J,Forrest J E.Corros Sci,1991; 32:521 |
[30] | Pourbaix M.Atlas of Electrochemical Equilibrium in Aqueous Solutions. Houston,TX,USA:National Association of Corrosion Engineers,1974:260 |
[31] | Bandy R,Roberge R,Rooyen D V.Corrosion,1985; 41:142 |
[32] | Paola A D.Electrochim Acta,1989; 34:203 |
[33] | Hakiki N E,Montemor M F,Ferreira M G S,Belo M D C.Corros Sci,2000; 42:687 |
[34] | Huang J B,Wu X Q,Han E H.Corros Sci,2010; 52:3444 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%