欢迎登录材料期刊网

材料期刊网

高级检索

利用纳米压痕实验以及四探针法, 系统研究了相同层厚Cu/X(X=Cr, Nb)纳米金属多层膜的力学性能(强/硬度)和电学性能(电阻率)的尺度依赖性. 微观分析表明: Cu/X(多层膜调制结构清晰, Cu层沿{111}面择优生长, X(层沿{110}面择优生长.纳米压入结果表明, Cu/X(多层膜的强度依赖于调制周期, 并随调制周期的减小而增加. 多层膜变形机制在临界调制周期(λc≈25 nm)由Cu层内单根位错滑移转变为位错切割界面. 多层膜的电阻率不仅与表面/界面以及晶界散射相关, 而且在小尺度下受界面条件显著影响. 通过修正的FS-MS模型可以量化界面效应对多层膜电阻率的影响. Cu/$X$纳米多层膜可以通过调控微观结构实现强度-电导率的合理匹配.

By using nanoindentation test and four point probe method, the length scaled dependent mechanical property (hardness/strength) and electrical property (resistivity) of Cu/X(X=Cr, Nb) nanostructured metallic multilayers with equal individual layer thickness were systematically investigated. It is revealed from the microstructural analysis that the modulation structure of Cu/X metallic multilayers is clear, and the preferred growth planes of Cu layer and X layer are {111} and {110}, respectively. The indentation test shows that the hardness/strength of the multilayers increases with reducing modulation period λ. The deformation mechanism of the multilayers transits from the glide of single dislocation in a Cu layer to the interface cutting at a critical modulation period λcc ≈25 nm). The resistivity of Cu/X multilayers is not only related to the scattering of conduction electrons at surfaces/interfaces and grain boundaries, but also affected by the interface condition at small scale. This significant interface effect on the length scale–dependent resistivity is assessed using a modified FS–MS model. The best combination of strength–resistivity can be achieved by tailoring the microstructure of Cu/X nanostructured metallic multilayers.

参考文献

[1]
[2]
[3]
[4]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%