欢迎登录材料期刊网

材料期刊网

高级检索

研究了无Re第二代单晶高温合金DD98M在900℃时的高周疲劳性能.结果表明:该合金的疲劳寿命随着应力水平的升高而减小,且缺口降低了合金的疲劳强度和疲劳寿命,900℃时光滑和缺口试样的疲劳强度分别为574和360 MPa;利用扫描电镜(SEM)观察疲劳试样的断口形貌,发现缺口试样为多裂纹源断裂,裂纹主要萌生于缺口根部应力集中区域,而光滑试样为单一裂纹源断裂,裂纹源起始于试样表面、次表面巯松处或碳化物处:利用透射电镜(TEM)观察疲劳变形后的位错组态,发现光滑试样中主要以基体通道中的位错滑移为主,高应力水平下会出现位错对切割γ'相,而缺口高周疲劳在高应力下主要变形机制为不全位错切割γ'相形成层错.

参考文献

[1] Cowles B A.Int J Fract,1996; 80:147
[2] Gao Y,St(o)1ken J S,Kumar M,Ritchie R O.Acta Mater,2007; 55:3155
[3] Liu L,Husseini N S,Torbet C J,Lee W K,Clarke R,Jones J W,Pollock T M.Acta Mater,2011; 59:5103
[4] Yi J Z,Torbet C J,Feng Q,Pollock T M,Jones J W.Mater Sci Eng,2007; A443:142
[5] Wright P K,Jain M,Cameron D.Superalloy 2004,TMS,2004; 657
[6] Antolovich B F,Saxena A,Antolovich S D.Superalloy 1992,TMS,1992; 727
[7] Zhang J H,Xu Y B,Wang Z G,Hu Z Q.Scr Mater,1995;32:2093
[8] Liu Y,Yu J J,Xu Y,Sun X F,Guan H R,Hu Z Q.Mater Sci Eng,2007; A454-455:357
[9] Crompton J S,Martin J W.Metall Trans,1984; 15A:1711
[10] Yang F M,Sun X F,Guan H R,Hu Z Q.Trans Nonferrous Met Soc China,2003; 13:141(杨福民,孙晓峰,管恒荣,胡壮麒.中国有色金属学报,2003;13:141)
[11] Ren W,Nicholas T.Mater Sci Eng,2003; A357:141
[12] Pilkey W D.Peterson's Stress Concentration Factors,New York:Wiley Interscience Publication,1997:1
[13] Liu Y.PhD Thesis,Institute of Metal Research,Chinese Academy of Sciences,Shenyang,2007(刘源.中国科学院金属研究所博士学位论文,沈阳,2007)
[14] Suresh S.translated by Wang Z G etc.Fatigue of Materials,Beijing:National Defense Industry Press,1991:131(Suresh S.王中光等译.材料的疲劳.北京:国防工业出版社.1993:131)
[15] Zhang X.PhD Thesis,Institute of Metal Research,Chinese Academy of Sciences,Shenyang,2006(张炫.中国科学院金属研究所博士学位论文,沈阳,2006)
[16] Ren W,Nicholas T.Mater Sci Eng,2002; A332:236
[17] Luká(s) P,Kunz L,Svoboda M.Z Metall,2002; 93:661
[18] Liu E Z,Zheng Z,Tong J,Ning L K,Guan X R,Acta Metall Sin,2010; 46:708(刘恩泽,郑志,佟健,宁礼奎,管秀荣.金属学报,2010; 46:708)
[19] Zhu X,Shyam A,Jones J W,Mayer H,Lasecki J V,Allison J E.Int J Fatigue,2006; 28:1566
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%