通过研究TiAl合金中不同Al含量和不同β相稳定元素含量的变化,分析了Al含量和β相稳定元素对TiAl合金初生相选择与凝固特征的影响.结果表明,单一β相凝固的TiAl基合金含Al量低,结晶温度范围窄,凝固组织均匀细化.采用背散射法(BSE)观察并分析了不同过冷度下铸造TiAl基合金非平衡凝固的枝晶形貌,运用经典竞争形核理论研究了Ti48Al2Cr2Nb(原子分数,%)包晶合金非平衡凝固中β相与α相的形核与过冷度的关系,并计算了Ti48Al2Cr2Nb合金深过冷凝固中的β相(bcc)和α相(hcp)的临界形核功及稳态形核率,结果表明,在约15K/s的冷速下,Ti48Al2Cr2Nb合金在所能达到的过冷度(≤370 K)范围内凝固时,β相始终为领先相优先形核.以过包晶凝固的TiAl基合金,其Al含量高,结晶温度范围窄,凝固枝晶细小,趋向逐层凝固,可减少并消除糊状凝固所造成的疏松和热裂趋势.β相稳定元素对凝固路径的影响取决于其Al当量,并可使TiAl合金的凝固路径从过包晶凝固转变为亚包晶凝固;过多的Al含量将导致铸造TiAl合金凝固组织中存在过多γ相,从而影响合金的强度和塑性.
参考文献
[1] | Appel F,Paul J D H,Oehring M.Gamma Titanium Aluminide Alloys.Germany:Wiley-VCH Verlag GmbH & Co.KGaA,2011:465 |
[2] | Imayev R M,Imayev V M,Oehring M,Appel F.Intermetallics,2007; 15:451 |
[3] | Huang Z W.Scr Mater,2005; 52:1021 |
[4] | Johnson D R,Chihara K,Inui H,Yamaguchi M.Acta Mater,1998; 18:6529 |
[5] | Huang L,Liaw P K,Liu C T,Liu Y,Huang J S.Trans Nonferrous Met Soc China,2011; 21:2192 |
[6] | Jung I S,Jang H S,Oh M H,Lee J H,Wee D M.Mater Sci Eng,2002; A329-331:13 |
[7] | Li Q C,An G Y,Zhu P Y,He Z M.Theoretical Basis of Casting Forming.Harbin:Harbin Institute of Technology Press,1980:75(李庆春,安阁英,朱培钺,何镇明.铸件形成理论基础,哈尔滨:哈尔滨工业大学出版社,1980:75) |
[8] | Chen G L,Xu X J,Teng Z K,Wang Y L,Lin J P.Intermetallics,2007; 15:625 |
[9] | Kim Y W.JOM,1989; 41:24 |
[10] | Anderson C D,Hofmeisiter W H,Bayuzick R J.Metall Trans,1992; 23A:2699 |
[11] | Shuleshova O,Woodcock T G,Lindenkreuz H G,Hermann R,L(o)ser W,Biichner B.Acta Mater,2007; 55:681 |
[12] | Kim S W,Wang P,Oh M H,Wee D M,Kumar K S.Intermetallics,2004; 12:499 |
[13] | Zhang Y G,Han Y F,Chen G L,Guo J T,Wan X J,Feng D.Intermetallic Compound Structure Material.Beijing:National Defense Industry Press,2001:701(张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤.金属间化合物结构材料,北京:国防工业出版社,2001:701) |
[14] | Su Y Q,Liu C,Li X Z,Guo J J,Li B S,Jia J,Fu H Z.Intermetallics,2005; 13:267 |
[15] | Ding X F,Lin J P,Zhang L Q,Su Y Q,Hao G J,Chen G L.Intermetallics,2011; 19:1115 |
[16] | Daloz D,Hecht U,Zollinger J,Combeau H,Hazotte A,Zalo(z)nik M.Intermetallics,2011; 19:749 |
[17] | Hu D,Botten R R.Intermetallics,2002; 10:701 |
[18] | Singh A K,Muraleedharan K,Banerjee D.Scr Mater,2003; 48:767 |
[19] | Hartmann H,Galenko P K,Holland-Moritz D,Kolbe M,Herlach D M,Shuleshova O.J Appl Phys,2008; 103:1 |
[20] | Liu Z G,Chai L H,Chen Y Y,Kong F T.Acta Metall Sin,2008; 44:569(刘志光,柴丽华,陈玉勇,孔凡涛.金属学报,2008; 44:569) |
[21] | Wu X H.Intermetallics,2006; 14:1114 |
[22] | Johnson D R,Inui H,Muto S,Omiya Y,Yamanaka T.Acta Mater,2006; 54:1077 |
[23] | Su Y Q,Liu C,Li X Z,Guo J J,Li B S,Jia J,Fu H Z.Intermetallics,2005; 13:267 |
[24] | Li M,Xue X Y,Hu R,Zhang T B,Zhong H,Li J S.J Aeronaut Mater,2012; 32(2):1(李曼,薛祥义,胡锐,张铁邦,钟宏,李金山.航空材料学报,2012; 32(2):1) |
[25] | Johnson D R,Inui H,Yamaguchi M.Intermetallics,1998;6:647 |
[26] | Zheng Y B,Li S M,Li Z X,Zhu P C,Fu H Z.J Aeronaut Mater,2009:29(4):12(郑元斌,李双明,李臻熙,朱鹏超,傅恒志.航空材料学报,2009:29(4):12) |
[27] | Chen Y Z.Master Thesis,Northwestern Polytechnical University,Xi'an,2005(陈豫增.西北工业大学硕士学位论文,西安,2005) |
[28] | Liu Z E.Fundamentals of Material Science.Xi'an:Northwestern Polytechnic University Press,2003:83(刘智恩.材料科学基础,西安:西北工业大学出版社,2003:83) |
[29] | Spaepen F.Mater Sci Eng,1994; A178:15 |
[30] | Christian J W.The Theory of Transformation in Metals and Alloys.Oxford:Pergamon Press,1965:418 |
[31] | Turnbull D.Contemporary Phys,1969; 10:473 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%