针对无Nb和添加0.06%Nb的2种中碳钢,研究了Nb对0.47%C中碳钢相变及组织细化的影响规律.2种实验钢正火组织均为铁素体+珠光体,Nb微合金化能够有效细化中碳钢的奥氏体晶粒,从而导致正火后组织中铁素体体积分数明显增加.含Nb中碳钢的屈服强度相对无Nb钢提高了18% (70 MPa),抗拉强度基本保持不变,-20℃冲击韧性则由7J提高到19J,呈现显著提高.此外,由连续冷却转变(CCT)曲线发现,Nb微合金化中碳钢可在冷速≤10℃/s时获得较高体积分数的铁素体,因此,可保证工件在较大冷速范围内不出现大块珠光体或贝氏体/马氏体组织.结合TEM观察发现,Nb元素以微小析出物Nb(C,N)的状态均匀分布在钢中.Nb(C,N)析出物能有效细化奥氏体晶粒,并因此提高铁素体形核率,这是Nb在中碳钢中影响相变并提高韧性的主要机制.
参考文献
[1] | Zerbst U,Madler K,Hintze H.Eng Fract Mech,2005; 72:163 |
[2] | Ekberg A,Kabo E.Wear,2005; 258:1288 |
[3] | Cui Y H,Zhang J P,Su H,Jiang B.Res Iron Steel,2005; 114:53 (崔银会,张建平,苏航,江波.钢铁研究,2005; 114:53) |
[4] | Miao C L,Shang C J,Zhang G D,Subramanian S V.Mater Sci Eng,2010; A527:4985 |
[5] | Gong W M,Yang C F,Zhang Y Q.JIron Steel Res,2006; 18(10):49 (龚维幂,杨才福,张永权.钢铁研究学报,2006;18(10):49) |
[6] | Hansen S S,Krauss G,Banerji S K.Proc Int Confon Welding Metallurgy of Structural Steels,Warrendale,PA:TMS-AIME,1987:155 |
[7] | Pickering F B,Garbarz B.Mater Sci Technol,1989; 5:227 |
[8] | Sakamoto H,Toyama K,Hirakawa K.Mater Sci Eng,2000; A285:288 |
[9] | Wu S,Li X C,Shang C J,Han J S,Wang Q D.Trans Mater Heat Treat,2012; 33(7):100 (吴斯,李秀程,尚成嘉,韩建生,王群娣.材料热处理学报,2012; 33(7):100) |
[10] | Lan Y J,Li D Z,Li Y Y.Acta Mater,2004; 56:1721 |
[11] | Li X C,Xia D X,Wang X L,Wang X M,Shang C J.Sci China Technol Sci,2013; 56(1):66 |
[12] | Fu JY.Iron Steel,2005; 40(8):1 (付俊岩.钢铁,2005:40(8):1) |
[13] | Tither G.Proceeding of the International Symposium Niobium 2001,Orlando:Niobium 2001 Limited,2001:1 |
[14] | GB/T 6394-2002.Metal-Methods for Estimating the Average Grain Size.Beijing:Standardization Administration of the People's Republic of China,2002 (国标GB/T 6394-2002.金属平均晶粒度测定法.北京:国家标准化管理委员会,2002) |
[15] | Yong Q L.Secondary Phases in Steel.Beijing:Metallurgical Industry Press,2006:145 (雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006:145) |
[16] | Narita K.Kobe SteelEngRep,1966; 16:179 |
[17] | Zheng L,Yong Q L,Sun Z B.Acta Metall Sin,1987; 23:547 (郑鲁,雍岐龙,孙珍宝.金属学报,1987; 23:547) |
[18] | Chi H X,Ma D S,Liu J H,Chen Z Z,Yong Q L.Acta Metall Sin,2010; 46:206 (迟宏宵,马党参,刘建华,陈再枝,雍岐龙.金属学报,2010;46:206) |
[19] | Gladman T.Proc Roy Soc,1966; 294:298 |
[20] | Gladman T.HSLA Steels.Warrendale,PA:TMS-AIME,1992:3 |
[21] | Gladman T.Mater Sci Technol,1999; 15(1):30 |
[22] | Lee K J,Kang K B,Lee J K,Kwon O,Chang R W.Proceedings of the International Conference in Mathematical Modelling of HotRolling of Steel,Hamilton,Canada:AIME,1990:435 |
[23] | Mecozzi M G,Sietsma J,Zwaag S.Acta Mater,2006; 54:1431 |
[24] | Gladman T.Recrystallization and Grain Growth of Multi-phase and Particle Containing Materials.Oskilde,Denmark:Riso National Laboratory,1980:183 |
[25] | Kop TA,Sietsma J,Zwaag S.MaterSci Technol,2001; 36:1569 |
[26] | Wagner V,Starke P,Kerscher E,Eifler D.Int J Fatigue,2011; 33:69 |
[27] | Ahlstrom J,Karlsson B.Wear,1999; 232:1 |
[28] | Aglan H A,Liu Z Y,Hassan M F,Fateh M.JMater Process Technol,2004; 151:268 |
[29] | Shang C J,Wu S,Li X C,He F,Wang X M.Chin Pat,201210065521.6,2012 (尚成嘉,吴斯,李秀程,贺飞,王学敏.中国专利,201210065521.6,2012) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%