通过冷轧变形结合变形后在820~870℃退火,在316L奥氏体不锈钢中实现了微米(3~5 μm为主)和亚微米(300~500nm为主)双峰晶粒尺度分布.在奥氏体冷变形过程中,形变孪生与应变诱导马氏体相变都集中发生于大变形阶段,据此推断奥氏体形变孪生是产生应变诱导马氏体的微观机制.在820~870℃范围内退火时,样品的硬度和晶粒尺寸分布几乎保持恒定.通过对退火过程中变形奥氏体和应变诱导马氏体演化驱动力的比较分析,推断奥氏体双峰尺度晶粒尺寸分布的来源是:微米尺度晶粒来自冷变形时未转变的变形奥氏体的再结晶,而亚微米尺度晶粒主要由应变诱导马氏体逆转变而产生.
参考文献
[1] | Hwang B,Lee C G.MaterSciEng,2010; A527:4341 |
[2] | Chen J,Li F,Liu Z Y,Tang S,Wang G D.ISIJ Int,2013; 53:1070 |
[3] | Weng Y Q.Ultrafine Grained Steel.Beijing:Metallurgical Industry Press,2003:9(翁宇庆.超细晶钢.北京:冶金工业出版社,2003:9) |
[4] | Misra R D K,Zhang Z,Venkatasurya P K C,Somani M C,Karjalainen L P.Mater Sci Eng,2011; A528:1889 |
[5] | Garcia M C,Caballero F G,Bhadeshia H K D H.ISIJ Int,2003;43:1238 |
[6] | Huang C X,Yang G,Gao Y L,Wu S D,Li S X,Zhang Z F.Philos Mag,2007; 87:4949 |
[7] | Huang C X,Gao Y L,Yang G,Wu S D,Li G Y,Li S X.J Mater Res,2006; 21:1687 |
[8] | Yang G,Huang C X,Wu S D,Zhang Z F.Acta Metall Sin,2009;45:906(杨钢,黄崇湘,吴士丁,张哲峰.金属学报,2009; 45:906) |
[9] | Etiennea A,Radigueta B,Genevoisa C,Bretona J M,Valievb R,Pareigea P.Mater Sci Eng,2010; A527:5805 |
[10] | Misra R D K,Zhang Z,Jia Z,Somani M C,Karjalainen L P.Scr Mater,2010; 63:1057 |
[11] | Zhang K M,Zou J X.Thin Solid Films,2012; 526:28 |
[12] | Rezaee A,Kermanpur A,Najafizadeh A,Moallemi M.Mater Sci Eng,2011; A528:5025 |
[13] | Misra R D K,Zhang Z,Jia Z,Surya V,Somani M C,Karjalainen L P.Mater Sci Eng,2011; A528:6958 |
[14] | Koeh C C.JMetastNanocrystMater,2003; 18:9 |
[15] | KarimPoor A A,Erb U,Austetal K T.Mater Sci Forum,2002;415:38 |
[16] | Wang Y M,Chen M W,Zhou F.Nature,2002; 419:912 |
[17] | Wang T S,Zhang F C,Zhang M,Lvb B.Mater Sci Eng,2008;A485:456 |
[18] | Alizamini H A,Militzer M,Poole W J.Ser Mater,2007; 57:1065 |
[19] | Chakrabarti D,Davis C,Strangwood M.Mater Charact,2007;58:423 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%