采用XRD和SEM分析了Ti07Zr0.3(Cr1-xV)2(X=0.1,0.2,0.3,0.4)合金的相组成、晶体结构和元素成分;采用Sieverts装置、差热和热重分析仪(DTA-TG)测量了合金的活化性能、吸放氢P-C-T曲线、热力学参数及高温放氢特征.结果表明,合金为多相组织,存在C36(P63/mmc)和C15(Fd3m)2种Laves相和几种晶格常数近似的钒基bee固溶体相.当V含量较低时,合金主要由C36型Laves相和少量bcc固溶体相组成.随着V含量增加,C36型转变为C15型Laves相,其中第3种(C层)堆垛存在几率增加,而且合金中bcc固溶体相含量增加.合金在2MPa氢压和常温下能迅速活化;表面氧化后,x=0.1和0.2合金仍表现出优异的活化性能.随着V含量增加,合金的贮氢量增加、平台压力减小.合金氢化的相对偏摩尔焓变(△H)和熵变(△S)的变化范围为-7~-28 kJ/mol和-35~-95 J/(mol·K).DTA-TG分析表明,合金氢化物分解主要出现在500~600K温度区间,并呈现对应不同类型氢化物的2个分解温度,加热到800 K时合金中稳定的氢化物完全分解.
参考文献
[1] | Profio P D,Area S,Rossi F,Filopponi M.Int J Hydrogen Energy,2009; 34:9173 |
[2] | Kim J H,Lee H,Hwang K T,Han J S.Int J Hydrogen Energy,2009; 34:9424 |
[3] | Park J M,Lee J Y.JLess-Common Met,1990; 160:259 |
[4] | Li G,Nishimiya N,Satoh H,Kamegashira N.J Alloys Compd,2005; 393:231 |
[5] | Park J G,Jang H Y,Han S C,Lee P S,Lee J Y.J Alloys Compd,2001; 325:293 |
[6] | Bououdina M,Enoki H,Akiba E.J Alloys Compd,1998; 281:290 |
[7] | Sakintuna B,Lamari-Darkrim F,Hirscher M.Int J Hydrogen Energy,2007; 32:1121 |
[8] | Guo X M,Wu E D.JAlloys Compd,2008; 455:191 |
[9] | Guo X M.PhD Dissertation,Institute of Metal Research,Chinese Academy of Sciences,Shenyang,2008 (郭秀梅.中国科学院金属研究所博士学位论文,沈阳,2008) |
[10] | Liu X P,Cuevas F,Jiang L J,Latroche M,Li Z N,Wang S M.J Alloys Compd,2009; 476:403 |
[11] | Tamura T,Tominaga Y,Matsumoto K,Fuda T,Kuriiwa T,Kamegawa A,Takamura H,Okada M.J Alloys Compd,2002; 330-332:522 |
[12] | Pei P,Song X P,Zhao M,Zhang P L,Chen G L.Rare Met Mater Eng,2008; 37:1419 |
[13] | Gao M X,Miao H,Zhao Y,Liu Y F,Pan H G.JAlloys Compd,2009; 484:249 |
[14] | Akiba E,Iba H.Intermetallics,1998; 6:461 |
[15] | Miao H,Gao M X,Liu Y F,Lin Y,Wang J H,Pan H G.Int J Hydrogen Energy,2007; 32:3947 |
[16] | Stein F,Palm M,SauthoffG.Intermetallics,2004; 12:713 |
[17] | Fujitani S,Yonezu I,Saito T,Furukawa N.J Less-Common Met,1991; 172-174:220 |
[18] | Mendelsohn M H,Gruen D M,Dwight A E.J Less-Common Met,1979; 63:193 |
[19] | Kabutomori T,Takeda H,Wakisaka Y,Ohnishi K.J Alloys Compd,1995; 231:528 |
[20] | Hang Z M,Xiao X Z,Tan D Z,He Z G,Li W P,Li S Q,Chen C P,Chen L X.Int JHydrogen Energy,2010; 35:3080 |
[21] | Manchester F D,Khatamian D.Mater Sci Forum,1988; 31:261 |
[22] | Hong C M,Han D G,Lin Q Z.JLess-Common Met,1991; 172-174:1044 |
[23] | Kay B D,Peden C H,Goodman D W.Phys Rev,1986; 34B:817 |
[24] | Rudman P S.JApplPhys,1979; 50:7195 |
[25] | Muthukumar P,Satheesh A,Linder M,Merta R,Groll M.Int J Hydrogen Energy,2009; 34:7253 |
[26] | Wu E D,Li W H,Li J.IntJHydrogen Energy,2012; 37:1509 |
[27] | Mouri T,Iba H.Mater Sci Eng,2002; A329-331:346 |
[28] | Okada M,Kuriiwa T,Tamura T,Takamura H,Kamegawa A.J Alloys Compd,2002; 330-332:511 |
[29] | Krishna Kumar M,Ramaprabhu S.Int J Hydrogen Energy,2007;32:1890 |
[30] | Muthukumar P,Linder M,Mertz R,Laurien E.Int J Hydrogen Energy,2009; 34:1873 |
[31] | Li G,Nishimiya N,Satoh H,Kamegashira N.J Alloys Compd,2005; 393:231 |
[32] | Kesavan T R,Ramaprabhu S,Rama Rao K V S,Das T P.J Alloys Compd,1996; 244:164 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%