欢迎登录材料期刊网

材料期刊网

高级检索

采用柠檬酸-硝酸盐法合成了Pr0.6-xNdxSr0.4FeO3-δ(x=0.0~0.6)系列钙钛矿型复合氧化物粉体, 用
XRD、FT-IR、TD-DTA、SEM等对产物的形成过程、物性及微结构进行了表征. 结果表明, 所合成的系列样品1200C煅烧2h即形成立方钙钛矿结构
的单相固溶体. 用直流四端子法测量了烧结陶瓷体在中温(450~800℃)范围内的电导率, A位单一稀土元素的样品(x=0.0、0.6)及以Pr(x=0.1)或
Nd(x=0.5)为主的稀土复合氧化物, 其电导率均在150S cm-1以上,明显高于双稀土样品(x=0.2、0.3、0.4)的数值( σ=45~80S cm-1); x=0.2、0.3
、0.4三个样品电导率较低的原因, 与它们在同样烧结制度下的致密度低密切相关.该系列样品的电导率在650~700℃附近出现最大值, 低温段的导电行为符合小极化子导电机制.

Pr0.6-xNdxSr0.4FeO3-δ(x=0.0~0.6)samples were synthesized by the citrate-nitrate method. The formation process of the perovskite-type phase and the microstructure of the samples were characterized by XRD, FT-IR, TG-DTA, and SEM. The results revealed that all the samples calcined at 1200℃ for 2h were single-phase solid solutions with cubic symmetry. The electrical conductivity of sintered ceramics at 450~800C were measured by four-probe technique. The results show that the specimens with single rare earth and the compounds with Pr or Nd as leading element at A-site have excellent electrical conductivity, the data are over 150S cm-1, clearly higher than that of two-rare earths specimens. The reason of decreasing electrical conductivity for 0.2≤x≤0.4 is correlated with lower relative density at the same sintering conditions. The maximum value of electrical conductivity for all samples occurred at about 600~700℃, and the electrical conductivity certified that the hopping of small polaron is the dominating mechanism below 650℃.

参考文献

[1] Yu H C, Fung K Z. Materials Research Bulletin, 2003, 38: 231--239.
[2] 高建峰, 郎莹, 夏长荣, 等. (GAO Jian-Feng,et al).材料研究学报 (Chinese Journal of Materials Research), 2005, 19 (1):
72--77.
[3] Minh N Q. J. Am. Cream. Soc., 1993, 76 (3): 563--588.
[4] Doshi R, Richards V L, Carter J D, et al. J. Electrochem. Soc.,1999, 146 (4): 1273--1278.
[5] Tai L W, Nasrallah M M, Anderson H U, et al. Solid State Ionics, 1995, 76 (3-4): 259--271.
[6] Petric A, Huang P, Tietz F. Solid State Ionics, 2000, 135: 719--725.
[7] Kostogloudis G Ch, Tsiniarakis G, Ftikos Ch. Solid State Ionics, 2000, 135: 529--535.
[8] 陈永红, 魏亦军, 高建峰, 等(CHEN Yong-Hong, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1132
--1138.
[9] Chen Y H, Wei Y J, Zhong H H, et al. J. Rare Earths, 2005, 23 (4): 437--441.
[10] Murray E P, Sever M J, Barnett S A. Solid State Ionics, 2002, 148: 27--34.
[11] Patrakeev M V, Bahteeva J A, Mitberg E B, et al. J. Solid State Chem., 2003, 172: 219--231.
[12] 陈永红, 魏亦军, 刘杏芹, 等. (CHEN Yong-Hong, et al). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2005, 21
(5): 673--678.
[13] 刘社田, 于作龙, 吴越. (LIU She-Tian,et al).无机材料学报(Journal of Inorganic Materials), 1994, 9 (2): 184--190.
[14] 郑起, 詹瑛瑛, 魏可镁, 等(ZHEN Qi, { et al). 结构化学(Chinese J. Struct. Chem.), 1998, 17 (6): 444--448.
[15] Tarte P, Rulmont A, Cahay R, et al. Solid State Ionics, 1990, 42: 177--196.
[16] Stevenson J W, Armstrong T R, Carneim R D, et al. J. Electrochem. Soc., 1996, 143 (9): 2722--2729.
[17] Heuveln F H van, Bouwmeester H J M. J. Electrochem. Soc., 1997, 144: 134--140.
[18] Mitterdorfer A, Gauckler L J. Solid State Ionics, 1998, 111: 185--218.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%