以BaCO3、Sm(NO3)3及Ti(OC4H9)4为原料, 采用柠檬酸盐前驱体法制备BaSm2Ti4O12, 并与草酸盐共沉淀法制备BaSm2Ti4O12粉体过程作了比较. 结果发现, 利用聚合物分解法, 可以在1000℃的较低温度下得到单相结晶的BaSm2Ti4O12, 而草酸盐沉淀法则需要1300℃的高温才能合成纯的BaSm2Ti4O12相. 研究表明, 这两种液相法所需合成温度相差很大, 是由于不同的相演化过程及反应步骤所致. 在共沉淀法中, 当煅烧前驱体时, 中间相Sm2Ti2O7与BaTi4O9和BaTiO3反应生成BaSm2Ti4O12相, 其过程与固相法相类似. 而在聚合物分解法中, 前驱体在热分解过程中生成BaTi2O5相, 导致了与固相过程完全不同的反应机制, 促进了BaSm2Ti4O12相的形成.
A polymeric precursor method by using citric acid as the chelating agent was invesigated and single-phase and well-crystallized BaSm2Ti4O12 powder was synthesized at 1000℃ for 3h. As a comparison, an oxalate co-precipitation method was applied to synthesize BaSm2Ti4O12 powder, but 1300℃ was needed to get the pure BaSm2Ti4O12. The different phase behavior and reaction sequences are here believed to answer for the different calcining temperatures needed via these two wet chemical methods. In the co-precipitation method, when heating the precipitate, intermediate phase Sm2Ti2O7 reacts with BaTi4O9 and BaTiO3 to produce BaSm2Ti4O12, which is
similar to the solid-state route. As to the polymeric precursor route, however, BaTi2O5 intermediate phase produces during the thermal decomposition process, which results in totally different reaction sequences from the solid-state reaction mechanism, and promotes the formation of BaSm2Ti4O12 phase.
参考文献
[1] | Belous A G, Ovchar O V. J. Mater. Res., 2001, 16 (8): 2350--2356. [2] Ohsato H, Ohhashi T, Kato H, et al. Jpn. J. Appl. Phys., 1995, 34 (1): 187--191. [3] Chen D, Jiao X, Zhang M. Mater. Res. Bull., 2000, 35: 2101--2108. [4] 杨群保, 李永祥, 殷庆瑞, 等(Yang Qun-Bao, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (6): 1135--1140. [5] Weng M H, Liang T J, Huang C L. J. Eur. Ceram. Soc., 2002, 22: 1693--1698. [6] 柯华, 许雪芹, 王文, 等(KE Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 373--378. [7] Lee Y C, Liang M H, Hu C T, et al. J. Eur. Ceram. Soc., 2001, 21: 2755--2758. [8] 潘庆谊, 徐甲强, 刘宏民, 等(PAN Qing-Yi, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14 (1): 83--89. [9] Kakegawa K, Wakabayashi T, Sasaki Y. J. Am. Ceram. Soc., 1983, 69 (4): C82--C83. [10] Yue Z X, Zhou J, Wang X H, et al. J. Eur. Ceram. Soc., 2003, 23: 189--193. [11] Saha S K, Pathak A, Pramanik P. J. Mater. Sci. Lett., 1995, 14: 35. [12] Xu Y B, Huang G H, He Y Y. Ceram. Int., 2005, 31: 21--25. [13] Xu Y B, He Y Y. Ceram. Int., 2002, 28: 75--78. [14] Hoffmann C, Waser R. Ferroelectrics., 1997, 201: 127--135. [15] Dur an P, Capel F, Gutierrez D, et al. J. Mater. Chem., 2001, 11: 1828--1836. [16] Dur an P, Capel F, Tartaj J, et al. J. Mater. Res., 2001, 16: 197--200. [17] Xu Y B, Lu P X, Huang G H, et al. Mater. Chem. Phys., 2005, 92: 220--224. [18] Dur an P, Gutierrez D, Tartaj J, et al. J. Eur. Ceram. Soc., 2002, 22: 797--807. [19] Hennings D, Mayr W. J. Solid. State. Chem., 1978, 26: 329--338. [20] Nyquist R A, Kagel R O. Infrared spectra of inorganic compounds, New York: Academic Press, 1971. 79. [21] Liu T, Zhang Y H, Shao H Y, et al. Langmuir, 2003, 19: 7569--7572. [22] Cheng P S, Yang C F, Chen Y C, et al. Ceram. Int., 2000, 26: 877--881. [23] Xu Y B, Yuan X, Lu P X, et al. Mater. Chem. Phys., 2006, 96: 427--432. [24] Pechini M P. United States Patent No. 3,330,697, 11 July 1967. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%