欢迎登录材料期刊网

材料期刊网

高级检索

以Nb2O5 和 Ta2O5为前驱反应物, KOH为矿化剂, 采用水热法和溶剂热法两种合成工艺制备了KTa1-xNbxO3 (KTN)陶瓷粉体.实验结果表明, 反应溶剂(水/异丙醇)和矿化剂KOH的摩尔浓度是影响KTN粉体结构和形貌的关键因素.采用水热工艺制备的KTN粉体, 当KOH浓度达到3mol/L、反应温度为523K、反应时间8h时, 开始出现以焦绿石结构为主的KTN粉体; 随着KOH的浓度和反应温度的增加, 粉体中的钙钛矿结构成分随之增加, 而焦绿石结构则逐渐减少, 但始终难以完全消除.采用溶剂热法, 在KOH浓度1~2mol/L、反应温度523K、反应时间8h的条件下, 合成了立方相钙钛矿结构KTa0.6Nb0.4O3陶瓷粉体, KTN晶粒形状呈规则的立方体, 尺寸约为30~50nm; 最后对溶剂热法合成纳米粉体的机理进行了分析讨论.

By using Nb2O5 and Ta2O5 as precursors, nanocrystalline potassium tantalite niobate KTa0.6Nb0.4O3 (KTN) powders were prepared by hydrothermal and solvothermal (isopropyl alcohol) synthesis processing. The relations of crystal structure and the synthesis conditions of KTN powders were investigated. All results of measurement on samples obtained demonstrate that the microstructure and morphology of nanocrystal powders depend on the reaction temperature, pressure and pH values of solvents. The reaction solvents are very important factors. The KTN with pyrochlore structure fabricated by the hydrothermal method shows although the amounts of pyrochlore phase in samples decrease gradually as the pH values of solvents increasing, pure perovskite phase will be gained first and last. KTN ceramic powders with perovskite structure were successfully synthesized via solvothermal processing with 1--2mol/L of KOH at 523K for 8h. The SEM images of powders show that the shape of particles is mainly cubic and the size of particles is 30--50nm.

参考文献

[1] Triebwasser S. Phys. Rev., 1959, 114: 63--68.
[2] Geusic J E, Kurtz S K, et al. Appl. Phys. Lett., 1964, 4(8): 141.
[3] Chen F S, Geusic J E, Kurtz S K, et al. J. Appl. Phys., 1966, 37(1): 388.
[4] Linde D, Glass A M, Rodgers K F. Appl. Phys. Lett., 1975, 26(1): 22--24.
[5] Debily P E, Gunter P, Arend H. Ceramic Bulletin, 1979, 58(6): 606--609.
[6] Sashital S R, Krishnakumar S, Esener S. Appl. Phys. Lett., 1993, 62(23): 2917--2920.
[7] Zhang D M, Li Z H, et al. Am. Ceramic. Soc. Bull., 2001, 2: 57--61.
[8] 王世敏, 张端明, 等(Wang S M, et al).无机材料学报(Journal of Inorganic Materials), 1997, 16(2): 819--823.
[9] 王晓东, 张端明, 等(Wang S M, et al).无机材料学报(Journal of Inorganic Materials), 2005, 20(5): 819--823.
[10] Dawson W J. Am, Ceram. Soc. Bull., 1988, 67: 1673--1678.
[11] Li W J, Shi E W, et al. J. China Ceram. Soc., 1999, 27 (6): 714--719.
[12] Kanai H, Harada K, Yamashita Y, et al. Jpn. J. Appl. Phys., 1996, 35: 5122--5125.
[13] Lu C H. Materials Letters, 1998, 34(3): 172--176.
[14] 张建荣, 高濂(Zhang J R, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19(5): 1178--1180.
[15] Suyal G, Colla E, et al. Nano Letters, 2004 4(7): 1339--1342.
[16] Kuang A X, Lu C J, Huang G Y, et al. Journal of Crystal Growth, 1995, 194: 80--86.
[17] Andrade J S, Pinheiro A G, et al. J. Phys.: Condens. Matter., 1999, (11): 4451--4460.
[18] 顾豪爽, 陈沛智, 等. 湖北大学学报, 1995, 17(1): 78--81.
[19] 王中林主编, 曹茂盛等译. 纳米材料表征. 北京: 化学工业出版社, 2005.

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%