以硅藻土-莫来石陶瓷 膜管为支撑体, 以TiO2 为过渡层, 通过溶胶-凝胶法制备了负载型聚酰亚胺/TiO2 复合膜. 采用FTIR、NMR、TG/DTA、TEM、BET和气体渗透法对复合膜进行了表 征和测试. 结果表明: TiO2 相通过与聚酰亚胺链上羧酸基支链发生键连形成有机无机组分交错分布的网状结构; 复合膜具有良好的热稳定性和有机无机兼容性; 相对于聚酰亚胺膜, 复合膜对H2 、CO2 、N2 和H2 O具有较高的分离性; TiO2 含量为15wt%的复合膜对H2 /N2 、CO2 /N2 和H2O/N2的分离因子分别为64.2、42.5和80.8.
A series of polyimide/TiO2 composite membranes supported on TiO2 /kieselguhr-mullite (K-M) were prepared via a sol-gel process. Their morphologies, chemical structures, thermal performances, pore distribution and gas permeability were characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR), solid-state 13C CP/MAS NMR, thermogravimetric analysis (TG/DTA), N2 adsorption and gas permeability measurement. The results show the TiO2 phase is well dispersed in the polyimide matrix. The TiO2 phase is connected with the polyimide through the pendant carboxyl along the polyimide chain. The polyimide/TiO2 composite membrane possesses finely thermal stability. The composite membranes show higher separation properties for H2, CO2, N2 and H2O when compared to pure polyimide. The separation factors of the polyimide/TiO2 composite membranes with 5wt% TiO2 contents for H2/N2, CO2/N2 and H2O/N2 are
64.2, 42.5 and 80.8, respectively.
参考文献
[1] | Mustoa P, Ragosta G, Scarinzi G, et al. Polymer, 2004, 45: 4265--4274. [2] Lin B P, Tang J N, Liu H J, et al. J. Solid State Chem., 2005, 178: 650--654. [3] Odegard G M, Clancy T C, Gates T S. Polymer, 2005, 46: 553--562. [4] Joly C, Goizet S, Schrotter J C, et al. J. Membr. Sci., 1997, 130: 63--74. [5] Kuntman A, Kuntman H. Microelectronics J., 2000, 31: 629--634. [6] Chang C C, Chen W C. Chem. Mater., 2002, 14: 4242--4248. [7] Kim H, Jang J. Polymer, 2000, 41: 6553--6561. [8] Stefanini G. Nucl. Instr. and Meth. A, 2004, 530: 77--81. [9] Moaddeb M, Koros W J. J. Membr. Sci., 1997, 125: 143--163. [10] Li C F, Zhong S H. Catal. Today, 2003, 82: 83--90. [11] Yano S, Iwata K. Mater. Sci. Eng., 1998, C6: 75--90. [12] Xenopoulos C, Mascia L, Shaw S J. Mater. Sci. Eng., 1998, C6: 99--114. [13] Ayala D, Lozano A E, de Abajo J, et al. J. Membr. Sci., 2003, 215: 61--73. [14] Wang Y C, Huang S H, Hu C C, et al. J. Membr. Sci., 2005, 248: 15--25. [15] Han H, Chung H, Gryte C C, et al. Polymer, 1999, 40: 2681--2685. [16] Li F, Fang S. Polymer, 1999, 40: 4571--4583. [17] Fujita H, Kishimoto A. J. Colloid Sci., 1958, 13: 418--428. [18] Cornelius C J, Marand E. J. Membr. Sci., 2002, 202: 97--118. [19] 张青红, 高濂, 郭景坤(ZHANG Qing-Hong, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (3): 556--560. [20] Watanabea T, Nakajima A, Wang R, et al. Thin Solid Films, 1999, 351: 260--263. [21] Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobio1. C: Potochem. Reviews, 2000, 1: 1--21. [22] 余家国, 赵修建, 赵青南(YU Jia-Guo, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2000, 28 (3): 245--250. [23] 罗仲宽, 宋力昕, 李明, 等(LUO Zhong-Kuan, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (6): 1397--1401. [24] Chiang P C, Whang W T, Tsai M H, et al. Thin Solid Films, 2004, 447-448: 359--364. [25] Hu Q, Marand E, Dhingra S, et al. J. Membr. Sci., 1997, 135: 65--79. [26] Liu L, Lu Q H, Yin J, et al. Mater. Chem. Phys., 2002, 74: 210--213. [27] Chiang P C, Whang W T. Polymer, 2003, 44: 2249--2254. [28] Hu Q, Marand E. Polymer, 1999, 40: 4833--4843. [29] Kong Y, Du H W, Yang J R, et al. Desalination, 2002, 146: 49--55. [30] Zhong S H, Li C F, Xiao X F. J. Membr. Sci., 2002, 199: 53--58. [31] 李传峰, 钟顺和. 高分子学报, 2002, 3: 326--330. [32] 郭俊宝, 钟顺和. 催化学报, 2004, 25 (10): 793--796. [33] Li C F, Zhong S H. J. Membr. Sci., 2002, 204: 89--95. [34] 李传峰, 钟顺和(LI Chuan-Feng, et al). 硅酸盐通报(Journal of the Chinese Ceramic Society), 2002, 2: 19--23. [35] Lee L H, Chen W C. Chem. Mater., 2001, 13: 1137--1142. [36] Guo H X, Zhao X P, Ning G H, et al. Langmuir, 2003, 19: 4884--4888. [37] Sawada T, Ando S. Chem. Mater., 1998, 10: 3368--3378. [38] Zhang J, Wang B J, Ju X, et al. Polymer, 2001, 42: 3697--3702. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%