欢迎登录材料期刊网

材料期刊网

高级检索

第一性原理计算方法已被广泛应用于材料科学的各个领域. 大多数第一性原理计算都是基于密度泛函理论进行的. 本文从密度泛函理论的基本原理出发, 对第一性原理计算的理论基础作了详细的总结, 并介绍了如何使用密度泛函微扰理论计算材料的压电、介电张量、机电耦合系数以及如何用现代极化理论计算材料的压电性能. 对近期发表的材料压电性能第一性原理计算方面的文献进行了回顾与总结. 最后总结了目前材料压电性能计算方面存在的问题并对其发展前景进行了展望.

The first-principles calculations were widely used in many different fields of materials science. Most of the calculations were based on the density functional theory. Starting from the density functional theory (DFT), we first summarized the theory of first-principles calculations in detail, then we introduced how to get the piezoelectric constants, dielectric constants etc by using the density functional perturbation theory (DFPT) and the Berry-phase theory. We summarized the recent literatures about the first-principles calculations of piezoelectric properties. In the end we summed up the problem existed nowadays and foresaw the future.

参考文献

[1] Bayer L L, Cohen R E, Krahauer H, et al. Ferroelectrics, 1990, 111: 1--7.
[2] Hohenberg P, Kohn W. Phys. Rev. B, 1964, 136: 864--871.
[3] Kohn W, Sham L J. Phys. Rev. A, 1965, 140: 1133--1138.
[4] Slater J. Phys. Rev, 1951, 81: 385.
[5] Perdew J P, Barke K, Ernzerhof M. Phys. Rev. Lett, 1996, 77: 3865--3868.
[6] Mozin I I, Singh D J. First-principles Calculations for Ferroelectrics. New York: American Institute of Physics, 1998. 251. [7] Wu Z, Cohen R E and Singh D J. Phys. Rev. B, 2004, 70: 104112.
[8] Vanderbilt D. Curr. Opin. Solid. State. Mater., 1997, 2: 701--705.
[9] Cohen R E, Krakauer H. Phys. Rev B, 1990, 42: 6416--6423.
[10] Kerker G P. Phys. C, 1980, 13: 189.
[11] Fermi. Nuovo Cimento, 1934, 11: 157.
[12] Phillips J C, Kleinman L. Phys. Rev, 1959, 116: 287.
[13] Zanger A, Cohen M L. Phys. C, 1979, 12: 4409.
[14] Pickett W E. Comput. Phys. Rep., 1989, 9: 115.
[15] Kingsmith R D, Vanderbilt D. Phys. Rev. B, 1993, 47: 1651--1654.
[16] 张沛霖, 钟维烈, 等. 压电材料与器件物理. 济南: 山东科学技术出版社, 1997. 4.
[17] Zhang Q M, Wang H, Kim N, et al. Appl. Phys., 1993, 75: 454.
[18] Cohen R E. Journal of Physics and Chemistry of Solids, 2000, 64: 139--146. [19] Wu X, Vanderbilt D, Hamann D R. Phys. Rev. B, 2005, 72: 035105.
[20] Martin R M. Phys. Rev. B, 1972, 5: 1 607.
[21] 李震宇, 贺伟, 杨金龙. 化学进展, 2005, 17: 192--202.
[22] Vanderbilt D. Journal of Physics and Chemistry of Solids, 2000, 61: 147--151.
[23] Wu Z, Krakauer H. Phys. Rev. B, 2003, 68: 014112.
[24] Bellaiche L. Current Opinion in Solid State and Materials Science, 2002, 6: 19--25.
[25] Zoroddu A, Bernardini F, Ruggerone P. Phys. Rev. B, 2001, 64: 045208.
[26] Veithen M, Ghosez P. Phys. Rev. B, 2002, 65: 214302.
[27] Ramer N J, Rappe A M. Phys. Rev. B, 2000, 62: R743--R746.
[28] Bellaiche L, Garcia A, Vanderbilt D. Phys. Rev. Lett., 2000, 84: 5427--5430.
[29] Hemphill R, Bellaiche L, Garcia L, et al. Appl. Phys. Lett., 2000, 77: 3642--3644.
[30] Ramer N J, Rappe A M. Journal of Physics and Chemistry of Sdids, 2000, 61: 315--360.
[31] Yacoub A AL, Bellaiche L, Wei S. Phys. Rev. Lett, 2002, 89: 057601.
[32] Bernardini F, Fiorentini V, Vanderbilt, Phys. Rev. B, 1997, 56: R10024--R10027.
[33] Nakhmanson S M, Nardelli M B, Bernholc J. Phys. Rev. Lett., 2004, 92: 115504. [34] Bellaiche L, Vanderbilt D. Phys. Rev. Lett., 1999, 83: 1347--1350.
[35] Yacoub A AL, Bellaiche L. Appl. Phys. Lett., 2001, 79: 2166--2169.
[36] Saghi-Szabo G, Cohen R E, Krakauer. Phys. Rev. Lett., 1998, 80: 4321--4324.
[37] Li Z, Yang J, Hou J G, et al. Phys. Rev. B, 2004, 70: 144518.
[38] Hill N A, Waghmare U. Phys. Rev B, 2000, 62: 8802--8810.
[39] Corso A D, Posternak M, Resta R, et al. Phys. Rev. B, 1994, 50: 10715--10721.
[40] Gopal P, Spaldin N A, Waghmare U. Phys. Rev. B, 2004, 70: 205104.
[41] Corso A D, Resta R, Baroni S. Phys. Rev. B, 1993, 47: 16252--16256.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%