采用离子交换法, 即以KOH溶液与钛酸纳米管(H2Ti2O4(OH)2)反应, 制备了钛酸钾纳米纤维. 透射电镜(TEM)和X射线衍射分析(XRD)结果表明, 经过离子交换, 形貌由纳米管变为纳米纤维, 晶体结构亦发生改变. 利用原子吸收分光光度法, 比色法和X射线光电子能谱(XPS)对离子交换产物的Ti, K元素的原子比和化学价态进行分析, 结果表明, 离子交换产物的经验式为: K1.34H0.66Ti2O4(OH)2与H2Ti2O4(OH)2纳米管相比, 钛酸钾纳米纤维的热稳定性较好, 700℃以上的热处理才使其晶型发生改变, 出现单斜型的K2Ti4O9. 高温处理导致钛酸钾纳米纤维的直径增加, 但仍保持较大长径比. 该材料的BET比表面积为104m2·g-1.
Potassium titanate nanofibers ( K1.34H0.66Ti2O4(OH)2) were prepared by using ion-exchange reaction between KOH solution and titanic acid nanotube (H2Ti2O4(OH)2). TEM and XRD results show that the nanotubes change into nanofibers and the crystalline structure alters. K/Ti atomic ratio, chemical state of K and Ti elements for the product were determined by means of atomic absorption spectrophotometry, colorimetric method, and X-ray photoelectron spectroscopy. The results indicate that the empirical formula of the product is K1.34H0.66Ti2O4(OH)2. Compared with H2Ti2O4(OH)2 nanotubes, the thermal-stability of potassium titanate nanofibers is higher. At T>700℃, the crystalline structure of this material changes into monoclinic phase K2Ti4O9. High temperature treatment results in nanofibers’ sizes increasing, but the aspect ratio is still high. The BET surface area of the material is 104m 2·g-1.
参考文献
[1] | Halberstadt M L, Rhee S K, Mansfield J A. Wear, 1978, 46 (1): 109--126. [2] Kim S J, Cho M H, Lim D S, et al. Wear, 2001, 251 (1-12): 1484--1491. [3] Tjong S C, Meng Y Z. Polymer, 1998, 39 (22): 5461--5466. [4] Yu D M, Wu J S, Zhou L M, et al. Composites Science and Technology, 2000, 60 (4): 499--508. [5] Kasuga T, Hiramatsu M, Hoson A, et al. Langmuir, 1998, 14 (12): 3160--3163. [6] 张顺利, 周静芳, 张治军, 等. 科学通报, 2000, 45 (10): 1533--1536. [7] YANG J J, JIN Z S, WANG X D, et al. Dalton Trans. 2003, (20): 3898--3901. [8] SUN X M, Li Y D. Chem. Eur. J., 2003, 9 (10): 2229--2238. [9] Ma R, Bando Y, Sasaki T. Chemical Physics Letters, 2003, 380 (5-6): 577--582. [10] ZHU H Y, GAO X P, LAN Y, et al. J. Am. Chem. Soc., 2004, 126 (27): 8380--8381. [11] MENG X D, WANG D Z, LIU J H, et al. Materials Research Bulletin, 2004, 39 (14-15): 2163--2170. [12] YUAN Z Y, SU B L. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 241 (1-3): 173--183. [13] 付敏, 江志东, 马紫峰, 等(FU Min, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (4): 808--814. [14] ZHU H Y, LAN Y, GAO X P, et al. J. Am. Chem. Soc., 2005, 127 (18): 6730--6736. [15] Hodos M, Horv\acute ath E, Haspel H, et al. Chemical Physics Letters, 2004, 399 (4-6): 512--515. [16] WANG B L, CHEN Q, HU J, et al. Chemical Physics Letters, 2005, 406 (1-3): 95--100. [17] WANG B L, CHEN Q, WANG R H, et al. Chemical Physics Letters, 2003, 376 (5-6): 726--731. [18] YUAN Z Y, ZHANG X B, SU B L. Appl. Phys. A, 2004, 78 (7): 1063--1066. [19] SUN X M, CHEN X, LI Y D. Inorg. Chem., 2002, 41 (20): 4996--4998. [20] 王晓冬, 李伟, 杨建军, 等. 化学研究, 2003, 14 (2): 5--8. [21] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1979. [22] ZHANG M, JIN Z S, ZHANG J W, et al. Journal of Molecular Catalysis A : Chemical, 2004, 217 (1-2): 203--210. [23] Joint Committee on Powder Diffraction Standard, 32--0861. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%