采用喷射-共沉淀法制备了纳米晶Ni1-xZnxFe2O4 (0≤x≤1.0)铁氧体粉料. 通过TG-DSC、XRD、SEM、TEM、BET等测试手段分析了其微观结构和形貌, 用振动样品磁强计测量其室温下磁性能. 结果表明: 喷射-共沉淀法制备的粉料颗粒细小均匀、形状完整. 600℃下煅烧1.5h, 样品晶粒尺寸为30nm左右, 平均颗粒尺寸<100nm. 室温下, 样品比饱和磁化强度随Zn2+含量增加而变化, 当x=0.5时, 最大比饱和磁化强度σs为66.8A·m2/kg. 当晶粒大小为41nm时, 纳米晶Ni0.5Zn0.5Fe2O4铁氧体矫顽力达到最大值5.06kA/m, 随后又随晶粒尺寸增大而减小. 这归因于纳米晶软磁材料中强烈的无序磁晶各向异性模式的影响.
Nanocrystalline Ni1-x ZnxFe2O4 ferrite with 0≤x≤1, was successfully prepared by a spraying-coprecipitation method. The microstructure was investigated by using TG-DSC, XRD, SEM, TEM as well as BET. Magnetic properties were measured with a vibrating sample magnetometer (VSM) at room temperature. The results show that uniform and fine nanocrystalline Ni1-xZnxFe2O4 ferrite powders are obtained by the spraying-coprecipitation method. The grain size is about 30 nm calcined at 600 for 1.5h. There are a few agglomerates with average sizes below 100nm. The specific saturation magnetization of nanocrystallineNi1-x ZnxFe2O4 ferrite increases with the concent of Zn2+ at room temperature, and maximum σs is 66.8A·m2/kg as the content of Zn2+ is around 0.5. When the grain size is 41nm, the coercivity Hc of nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite arrives at 5.06kA/m, and then it decreases with the increase of the grain size. The results may be explained in terms of intense random magnetocrystalline anisotropy model in nanocrystalline materials.
参考文献
[1] | Dorman J L, Fiorani D. J Magn. Magn. Mater., 1995, 140-144: 415--418. [2] Kodama R H. J Magn. Magn. Mater., 1999, 200: 359--372. [3] Zhengxing Yue, Ji Zhou, Longtu Li, et al. J Magn. Magn. Mater., 2000, 208: 55--60. [4] Buschow K H. J. Handbook of Magnetic Materials, First Edition. Amsterdam: North-Holland Co., 2003. [5] Suryanarayana C. International Mater. Rev., 1995, 2: 41--63. [6] 张立德, 牟季美. 纳米材料和纳米结构. 北京: 科学出版社, 2001. [7] 文雯, 张怀武, 钟慧. 磁性材料及器件, 2005, 36 (3): 24--26. [8] 任晓燕, 徐振佩, 何正明. 材料研究学报, 2004, 18 (3): 315--320. [9] Islam M U, Abbas T, Shahida B Niazi, et al. Solid State Communications, 2004, 130: 353--357. [10] 孙杰, 刘建华, 李松梅(SUN Jie, et al).无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1077--1082. [11] 李萌远, 李国栋. 铁氧体物理学. 北京: 科学出版社, 1978. [12] 都有为. 材料导报, 2001, 15 (7): 6--8. [13] Herzer G. Scripta Metall. Mater., 1995, 33 (10/11): 1741--1750. [14] David J. Sellmyer, Yi Liu, D. Shindo, Handbook of Advanced Magnetic Materials, First Edition. Beijing: Tsinghua University Press, 2005. [15] 王丽, 周庆国, 孙建荣, 等. 磁性材料及器件, 2006, 37 (1): 23--25. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%