以化学共沉淀法制备的球形Ni0.5-xCo2xMn0.5-xCO3(x=0.075, 0.1, 1/6)为前驱体合成了球形锂离子电池正极材料LiNi0.5-xCo2xMn0.5-xO2(x=0.075, 0.1, 1/6), 研究了钴含量对LiNi0.5-xCo2xMn0.5-xO2的物理性能和电化学性能的影响. SEM研究表明, 球形LiNi0.5-xCo2xMn0.5-xO2由许多一次颗粒构成, 随着钴含量的增加, 产物中一次颗粒增大. XRD分析表明, LiNi0.5-xCo2xMn0.5-xO2 均为具有层状结构的纯相物质. 电化学性能测试结果显示, LiNi0.5-xCo2xMn0.5-xO2随着钴含量的增加, 材料的充放电容量提高, 且循环性能变好: 0.2C倍率下、2.7~4.3V的电压范围内, LiNi0.425Co0.15Mn0.425O2的放电比容量为145mAh·g-1、LiNi0.4Co0.2Mn0.4O2为150mAh·g-1、LiNi1/3Co1/3Mn1/ 3O2为158mAh·g-1, 循环50周期后LiNi0.425Co0.15Mn0.425O2和LiNi0.4Co0.2Mn0.4O2的容量衰减率在3%以内, LiNi1/3Co1/3Mn1/3O2容量无衰减. 交流阻抗测试结果表明, 随着钴含量的增加, 材料阻抗值减小.
Spherical LiNi0.5-xCo2xMn0.5-xO2(x=0.075, 0.1, 1/6) powders were synthesized from the co-precipitated carbonate precursor, Ni0.5-xCo2xMn0.5-xCO3(x=0.075, 0.1, 1/6). The effects of the Co content on the physics and electrochemical performance of LiNi0.5-xCo2xMn0.5-xO2 were investigated. The SEM images of LiNi0.5-xCo2xMn0.5-xO2 show that the spherical material consists of many primary particles, which sizes increase with the content of Co increasement. The results of X-ray powder diffraction show that all LiNi0.5-xCo2xMn0.5-xO2 are pure phase materials with layered structures. The electrochemical tests indicate that the discharge capacities of LiNi0.5-xCo2xMn0.5-xO2 increase and the cycle performances become better with the content of Co increasing. Under the charge/discharge conditions of 0.2C rate and voltage range of 2.7--4.3V, the discharge properties of spherical LiNi0.425Co0.15Mn0.425O2, LiNi0.4Co0.2Mn0.4O2 and LiNi1/3Co1/3Mn1/3O2 are 145,150 and 158 mAh·g-1, respectively. The discharge capacity fadings for LiNi0.425Co0.15Mn0.425O2 and LiNi0.4Co0.2Mn0.4O2 are less than 3% , however, there is no fade for that of LiNi1/3Co1/3 Mn1/3O2 after 50 cycles. The results of AC impedance show that the impedance decreases with the content of Co increasing.
参考文献
[1] | 叶尚云, 张平伟,乔芝郁(YE Shang-Yun, et al). 有色金属(Chinese Journal of Rare Metals). 2005, 29: 328--335. [2] 唐爱东,黄可龙(TANG Ai-Dong, et al). 化学学报(Acta Chimica Sinica), 2005, 63(13): 1210--1214. [3] 常照荣,齐霞,吴锋等(CHANG Zhao-Rong, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society). 2006, 34 (3): 329--333. [4] 钟辉,许惠(ZHONG Hui, et al). 化学学报(Acta Chimica Sinica), 2004, 62(12): 1123--1127. [5] LI De-Cheng, Hideyuki N, Yoshio M. Electrochimica Acta. 2004, 50: 427--430. [6] Cho T H, Park S M. Journal of Power Sources. 2005, 142 (1--2): 306--312. [7] Yabuuchi N, Ohzuku T. Journal of Power Sources, 2005, 146: 636--639. [8] 汤宏伟(TANG Hong-Wei). 湖南大学博士学位论文. 2003. [9] HE Xiang-Ming, LI Jian-Jun, CAI Yan, et al. Materials Chemistry and Physics, 2006, 95: 105--108. [10] 应皆荣, 高剑, 姜长印, 等(YING Jie-Rong, et al).无机材料学报(Journal of Inorganic Materials). 2006, 21 (2): 291--298. [11] 何向明, 蒲薇华,蔡砚, 等(HE Xiang-Ming, et al).中国有色金属学报(The Chinese Journal of Nonferrous Metals). 2005, 15 (9): 1390--1395. [12] 孙玉城(SUN Yu-cheng). 中科院物理所博士学位论文. 2004. [13] 赵煜娟(ZHAO Yu-juan). 北京科技大学博士学位论文. 2002. [14] 黄友元, 周恒辉, 陈继涛, 等(HUANG You-Yuan, et al).物理化学学报(Acta Phys.-Chim.Sin.), 2005, 21 (7): 725--729. [15] 杜柯(DU Ke). 中国科学院上海微系统与信息技术研究所博士学位论文. 2003. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%