根据不同组分的磁性差异, 提出一种在梯度磁场中, 采用粉浆浇注法制备铁磁性/非磁性功能梯度材料的方法, 并用此方法制备出成分连续变化的ZrO2/Ni功能梯度材料. 采用能谱分析仪、光学显微镜和X射线衍射仪对ZrO2/Ni功能梯度材料的成分分布、微观结构和相组成进行了研究. 结果表明, 在0.5T/m的磁场梯度作用下, 浆料中Ni和ZrO2颗粒由于所受磁场作用不同而发生重新排列, 形成沿样品厚度方向成分的梯度分布. 此外, 建立了功能梯度材料成分与颗粒粒度、饱和磁化强度以及磁场梯度之间的定量关系.
ZrO2/Ni functionally graded materials was fabricated via slip-casting under a gradient magnetic field (0.5T/m), owing to their distinct difference in magnetic properties. The products were characterized by X-ray energy dispersion spectroscope, optical micrography and X-ray diffraction. It is found that components are graded distributed along the direction of magnetic field gradient, due to the distinct different magnetic forces between Ni and ZrO2 particles. The quantitive components distribution is established among the grain size of particles, saturated magnetization and the applied magnetic field gradient.
参考文献
[1] | Lee W Y, Stinton D P, Berndt C C, et al. J. Am. Ceram. Soc., 1996, 79 (12): 3003--3012. [2] Ma J, Tan G E B. J. Mater. Process. Technol., 2001, 113: 446--449. [3] Yin H M, Paulino G H, Buttlar W G. J. Appl. Phys., 2005, 98 (6): 063704. [4] Watanabe Y, Kang S H, Chan J W, et al. J. Appl. Phys., 2001, 89 (3): 1977--1982. [5] Zhu J C, Yin Z D, Lai Z H. J. Mater. Sci., 1996, 31: 5829--5834. [6] Fitzsimmons M, Sarin V K. Surf. Coat. Technol., 2001, 137: 158--163. [7] Zhang J, Wang Y Q, Zhou B L, et al. J. Mater. Sci. Lett., 1998, 17: 1677--1679. [8] Zhang W F, Xi N S, Tao C H, et al. J. Mater. Sci. Technol., 2001, 17: 65--66. [9] Wan Y P, Sampath S, Prasad V, et al. J. Mater. Process. Technol., 2003, 137: 110--116. [10] 邹俭鹏, 阮建明, 黄伯云, 等(ZOU Jian-Peng, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1181--1188. [11] Derrik F. IEEE Trans. Magn., 1991, 27 (4): 3655--3677. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%