通过溶胶-凝胶法制备了纳米TiO2半导体溶胶材料(nano-TiO2 semiconductor sol, NTSS), 并测定了抗菌性能; 以黄瓜为研究对象, 初步探讨了NTSS在防治植物细菌性/真菌性病害及增加叶片光合色素含量方面的光生物学效应. 试验结果表明, 溶胶材料中TiO2颗粒的结晶型为锐钛矿型, 平均粒径为30.6nm; TiO2溶胶材料可在叶片等固体表面形成连续、稳定的抗菌薄膜, 具有很强的光氧化活性, 抗菌率达到99.9%; 通过人工接种病原菌试验及田间病害调查试验发现, 黄瓜喷施一定浓度的NTSS后, 可显著降低叶片病斑面积、发病率及病情指数, 对黄瓜细菌性角斑病/霜霉病的发生具有抑制效果; 测定叶片光合色素含量发现, NTSS对叶绿素(Chl)及类胡萝卜素(Car)的生成具有促进作用.
Nano-TiO2 semiconductors sol (NTSS) was synthesized through a sol-gel method, and its antibacterial abilities were identified by using bacterial pathogens of Pseudomonos syringae pv. lachrymans and Xanthomonas vesicatoria. Taking cucumber plants as experimental objects, the photobiological effects of NTSS on preventing from plant bacterial/fungal diseases and promoting contents of photosynthetic pigments were primarily studied. Results show that crystal species of TiO2 particles synthesized in experiments are in anatase phase with average size of about 30.6nm. NTSS possesses strong oxidizing power with over 99.9% antibacterial rate by forming continuous and stable antibacterial films on surfaces of substance. Lesion areas, disease incidences and disease indexes of leaves can be significantly reduced by spraying NTSS on cucumber leaves; however, content of chlorophyll and carotenoid in leaves can be significantly promoted. It is proved that NTSS can significantly prevent and control the development and pervasion of bacterial angular leaf spot of cucumber. The experimental results lay an important theoretical foundation and technical approach for developing and applying of biofuntional nanomaterials in agricultural areas.
参考文献
[1] | Fujishima A, Honda K. Nature, 1972, 238 (5358): 37-38. [2] Crabtree R H. Science, 1998, 282 (5396): 2000-2001. [3] Hong F S, Zhou J, Liu C, et al. Biol. Trace Element Res., 2005, 105 (3): 269-279. [4] Mill A, Le Hunte S. J. Photochem. Photobiol. A: Chem., 1997, 108 (1): 1-35. [5] 李炜罡, 吕维平, 王海滨, 等. 化工新型材料, 2003, 31 (3): 7-10. [6] 李 敏, 王振岭, 石恒真, 等(LI Min, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (6): 1261-1266. [7] 陈惜燕, 王利国, 李 玲, 等. 中国生物防治, 2005, 21 (4): 269-272. [8] Matsunaga T, Tomoda R, Nakajima T, et al. FEMS Microbiol. Lett., 1985, 29 (4): 211-214. [9] Sunada K, Kikuchi Y, Hashimoto K, et al. Environ. Sci. Technol., 1998, 32 (5): 726-728. [10] Obee T N, Brown R T. Environ. Sci. Technol., 1995, 29 (5): 1223-1231. [11] Fujihira M, Satoh Y, Osa T. Nature, 1981, 293 (2): 206-208. [12] Bahnamann D. Sol. Ener. Mater., 1991, 24 (3): 564-583. [13] Matsunaga T, Tomoda R, Nakajima T, et al. Appl. Environ. Microbiol., 1988, 54 (6): 1330-1333. [14] 黄宁平, 黄 丹, 徐敏华, 等.生物化学与生物物理进展, 1997, 24 (5): 470-473. [15] Cai R X, Hashimoto K, Kubota Y, et al. Chem. Lett., 1992, 3 (3): 427-430. [16] Ichinose H, Kawahara A, Katsuki H. J. Ceram. Soc. Jpn., 1996, 104 (10): 914-917. [17] 戈 磊, 徐明霞, 方海波, 等. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2005, 33 (3): 330-334. [18] 郭世荣. 无土栽培学. 北京: 中国农业出版社, 2003. 111-116. [19] GB/T 17980. 110-2004, 农药-田间药效试验准则(二)-第110部分: 杀菌剂防治黄瓜细菌性角斑病. [20] 邹 琦. 植物生理生化实验指导. 北京: 中国农业出版社, 2000. 36-39. [21] Sutherland M W. Physiol. Mol. Plant Pathol., 1991, 39: 79-93. [22] Bradley D J, Kjellbom P, Lamb C J. Cell, 1992, 70 (1): 21-30. [23] 朱国锋, 瞿礼嘉, 顾红雅, 等. 植物学报(Acta Botanica Sinica), 1997, 39 (6): 561-569. [24] 王慧忠. 山地农业生物学报, 2005, 24 (1): 170-175. [25] Bungard R A, Ruban A V, Hibberd J M, et al. Proc. Natl. Acad. Sci. USA, 1999, 96 (3): 1135-1139. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%