用共沉淀法制备了Zr0.5Ti0.5O2复合氧化物, 考察了沉淀时的pH值、温度及焙烧温度对样品织构性能的影响. 分别用BET、XRD、NH3-TPD 对样品的织构、结构性能和表面酸性进行了表征. 将经过不同温度焙烧后的样品作为载体制备成Pt/Zr0.5Ti0.5O2催化剂, 考察了催化剂对C3H8、CO、NO 的催化性能, 并与传统的以La-Al2O3为载体的Pt/La-Al2O3汽车尾气三效催化剂进行了比较. 结果表明: 当沉淀时的pH=11、温度为25℃、焙烧温度为550℃时, 所制得的样品具有较好的织构性能(比表面积为195m2· -1、孔容为0.28mL·g -1)、较强的表面酸性和较宽的酸度分布; 用该样品制备的汽车尾气三效催化剂与传统的以La-Al2O3作载体的Pt/La-Al2O3催化剂相比, 具有更好的HC和CO催化性能和优异的NO转化性能.
Zr0.5 Ti0.5 O2 mixed oxides were prepared by co-precipitation method. The effects of pH value, precipitation temperature and calcination temperature of Zr0.5 Ti0.5O 2 on its specific surface area, pore size, pore volume and surface acidity were investigated. The samples calcined at 500℃, 550℃, 600℃, 650℃, 700℃, 800℃ for 2h, were characterized by means of BET, X-ray diffraction (XRD) and NH3-temperature programmed desorption (NH3-TPD). Using the Zr0.5Ti0.5O2 and La-Al2O3 as catalyst carriers, and the activities of Pt/Zr0.5 Ti0.5O2 and Pt/La-Al2O3 catalysts were evaluated in the simulated gas. The results show that when the pH is 11, precipitation temperature is 25℃, calcination temperature is 550℃, Zr0.5Ti0.5O2 exhibits the highest specific surface area(195m2·-1), larger pore volume(0.28mL·g -1), proper surface acidic amount and acidity. Compared with Pt/La-Al2O3, Pt/Zr0.5Ti0.5O2 exhibits excellent low-temperature catalytic activity and lower the light-off temperature of hydrocarbon (234℃) and carbon monoxide (203℃) and nitrogen oxides (213℃). At the same time, it is found that the Pt/Zr0.5Ti0.5O2 catalysts significantly improve the conversion for nitrogen oxides.
参考文献
[1] | Kaspar J, Fornasiero P, Hickey N. Catalysis Today, 2003, 77 (4): 419-449. [2] Das D, Mishra H K, Parida K M, et al. Journal of Molecular Catalysis A: Chemical, 2002, 189 (2): 271-282. [3] 陈同云, 古绪鹏, 胡祥余. 无机化学学报, 2002, 18 (4): 378-382. [4] Colón G, Hidalgo M C, Navío J A. Applied Catalysis A: General, 2002, 231 (1-2): 185-199. [5] Matsumoto S, Ikeda Y, Suzuki H, et al. Applied Catalysis B: Environmental, 2000, 25 (2-3): 115-124. [6] Oi-Uchisawa J, Wang S D, Nanba T, et al. Applied Catalysis B: Environmental, 2003, 44 (3): 207-215. [7] Machida M, Ikeda S, Kurogi D, et al. Applied Catalysis B: Environmental, 2001, 35 (2): 107-116. [8] 刘奉生, 史文芳, 龚卫国. 稀有金属材料与工程, 1999, 28 (5): 326-329. [9] Lu C M, Lin Y M, Wang I K. Applied Catalysis A: General, 2000, 198 (1-2): 223-234. [10] Das D, Mishra H K, Dalaia A K, et al. Catalysis Letters, 2004, 93 (3-4): 185-193. [11] Reddya B M, Sreekanth P M, Yamada Y, et al. Applied Catalysis A: General, 2002, 228 (1-2): 269-278. [12] Manríquez M E, López T, Gómez R, et al. Journal of Molecular Catalysis A: Chemical, 2004, 220 (2): 229. [13] 全学军, 李大成(QUAN Xue-Jun, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16 (5): 853-859. [14] 徐跃萍, 郭景坤(XU Yao-Ping, et al). 硅酸盐学报(Journal of The Chinese Ceramic Society), 1993, 21 (3): 280-284. [15] Zou H, Lin Y S. Applied Catalysis A: General, 2004, 265 (1): 35-42. [16] Karakchiev L G, Zima T M, Lyakhov N Z. Inorganic Materials, 2001, 37 (4): 386-390. [17] Katada N, Niwa M. Catalysis Surveys from Asia, 2004, 8 (3): 161-169. [18] 曾健青, 钟 炳. 石油化工, 1997, 27 (3): 167-171. [19] González-Velasco J R, Botas J A, Ferret R, et al. Catalysis Today, 2000, 59 (3-4): 395-402. [20] He H, Dai H X, Ng L H, et al. Journal of Catalysis, 2002, 206 (1): 1-13. [21] Shi Zhong-Hua, Gong Mao-Chu, Chen Yao-Qiang. Chinese Journal of Catalysis, 2006, 27 (8): 647-649. [22] Zhang Huai-Hong, Gong Mao-Chu, Guo Jia-Xiu, et al. Chinese Journal of Catalysis, 2004, 25 (2): 85-86. [23] 郭家秀, 袁书华, 龚茂初, 等. 中国稀土学报, 2006, 24 (2): 174-178. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%