欢迎登录材料期刊网

材料期刊网

高级检索

选用四种商业氮化硅粉料(其中FD1、FD2和M11均由硅粉直接氮化法合成但后处理工艺不同, 而UBE粉的合成采用亚胺基硅热分解法), 系统研究了酸洗和热氧化处理对其表面特性和水基浆料流变特性的影响. 研究表明, 表面基团的种类和数量、可溶性高价反离子浓度以及离子电导率是影响氮化硅粉料在水中分散性能的关键因素. FD1粉料分散性能差的原因是可溶性高价反离子浓度太高, FD2粉料分散性能差的关键是颗粒表面存在Si-O-C-R憎水基团, M11粉料分散性能不好源于离子电导率过大, 而UBE粉料表面的大量Si-O-Si基团是其分散性能差的限制性因素. 经表面改性处理的四种氮化硅水基浆料具有良好的流变特性.

Influences of acid leaching and thermal oxidation on aqueous dispersibility were investigated for four types of commercial silicon nitride powders, in conjunction with their DRIFT spectra and soluble counter-ions. Three of the powders, referred to FD1, FD2 and M11, were produced by the direct nitridation of silicon powder with different pulverization processes, while the UBE powder was made by calcination of the silicon diimide precipitate. Particle surface groups and soluble counter-ions (especially high-valency counter-ions) are proved to be the crucial factors that determine the aqueous dispersibility of Si3N4 powders. The study indicates that the high-valency counter-ions are the crucial factor limiting the dispersibility of powder FD1, which can be eliminated by acid leaching. For powder FD2, the barrier to preparing highly concentrated suspension is the large number of hydrophobic Si-O-C-R groups on particle surfaces, and those groups can be removed by thermal oxidation. For powder M11, the high concentration of soluble NH4+ restricts the aqueous dispersibility of the as-received sample, which can be removed by thermal oxidation. For the as-received powder UBE, however, hydrophobic Si-O-Si surface groups limit the preparation of highly concentrated slurries. After particle surface modification, the four types of silicon nitride powders show excellent aqueous dispersibilities.

参考文献

[1] Omatete O O, Janney. M A. Am. Ceram. Soc. Bull., 1991, 70 (10): 1641--1649.
[2] Gauckler L J, Graule Y J. Process of fabrication of ceramic green bodies. Swiss Patent, No. 02377, 1992-1-16.
[3] Luther E P, Lange F F, Pearson D S, et al. J. Am. Ceram. Soc., 1999, 82 (1): 74--80.
[4] Moreno R, Salomoni A, Castanho S M. J. Eur. Ceram. Soc., 1998, 18 (2): 405--416.
[5] Kramer T, Langer F F. J. Am. Ceram. Soc., 1994, 77 (4): 922--928.
[6] Ducker W A, Luther E P, Clarke D R, et al. J. Am. Ceram. Soc., 1997, 80 (3): 575--583.
[7] Paik U, Hackley V A, Lee H-W. J. Am. Ceram. Soc., 1999, 82 (4): 833--840.
[8] Hackley V A. J. Am. Ceram. Soc., 1998, 81 (9): 2421--22428.
[9] Laarz E, Zhmud B V, L. Bergstrom. J. Am. Ceram. Soc., 2000, 83 (10): 2394--2400.
[10] 刘学健, 古宏晨, 黄莉萍, 等(LIU Xue-Jian, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14 (3): 491--494.
[11] 刘学健, 黄莉萍, 古宏晨, 等(LIU Xue-Jian, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16 (5): 877--882.
[12] 刘学健, 黄莉萍, 古宏晨, 等(LIU Xue-Jian, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (1): 150--154.
[13] Si W J, Miao H Z, Graule T J, et al. J. Chinese Ceram. Soc., 1996, 24 (5): 531--536.
[14] Yang J L, Xie Z P, Huang Y, et al. J. Chinese Ceram. Soc., 1997, 25 (6): 679--686.
[15] Hruschka M K, Si W J, Tosatti S, et al. J. Am. Ceram. Soc., 1999, 82 (8): 2039--2043.
[16] Janney M A, Omatete O O, Walls C A, et al. J. Am. Ceram. Soc., 1998, 81 (3): 581--591.
[17] 代建清. 北京: 清华大学博士学位论文. 2001.
[18] Dai Jian-Qing, Huang Yong, Xie Zhi-Peng, et al. J. Am. Ceram. Soc., 2002, 85 (2): 293--298.
[19] 代建清, 黄勇, 谢志鹏, 等. 光谱学与光谱分析, 2002, 22 (2): 218--222.
[20] 代建清, 黄勇, 戴永年, 等. 昆明理工大学学报, 2005, 30 (5): 29--34.
[21] Natansohn S, Pasto A E, Rourke W J. J. Am. Ceram. Soc., 1993, 76 (9): 2273--2284.
[22] 杨金龙, 谢志鹏, 黄勇, 等. 硅酸盐学报, 1997, 25 (6): 679--686.
[23] Malghan S G. Colloids and Surfaces, 1992, 62 (1): 87--99.
[24] Hackley V A, Malhan S G. J. Mat. Sci., 1994, 29 (8): 4420--4430.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%