应用X射线衍射密度法Zn(Ga,Fe)2O4(R因子法)计算了Zn(Ga,Fe)2O4固溶体尖晶石结构中阳离子分布, 结果表明: 金属离子在ZnGa2O4尖晶石结构中采取中间偏反型分布. 随Fe3+离子进入尖晶石结构, 促使Zn2+进入A位的量增多, 而Ga3+进入B位的量增多. 同时, 各样品的IR光谱表明: Fe 3+进入尖晶石结构取代Ga 3+对代表电子传导活化能的极限频率影响很大.
The cation distribution in Zn(Ga,Fe)2O4 solid solutions with spinel structure were calculated by using the X-ray powder diffraction density method (R factor Method). The results indicate that the cations show osculant but lean to inverse distribution in Zn(Ga,Fe)2O4. With Fe3+ introduction into the spinel structure of Zn(Ga,Fe)2O4, the Zn2+ concentration in A sites and Ga3+ concentration in B sites increase. Meanwhile, the IR spectra of samples indicate threshold frequency representing the activation energy for electron conduction is affected sharply by the substitution of Fe3+ for Ga3+.
参考文献
[1] | Malavasi L, Ghigna P, Chiodelli G, et al. J. Solid State Chem., 2002, 166 (1): 171--176. [2] Okonska-Kozlowska I, Malicka E, Waskowska A, et al. J. Solid State Chem., 2001, 158 (1): 34--39. [3] French V, Feast M, Partridge L, et al J. Phys. Chem. Solids, 1998, 59 (8): 1259--1269. [4] Monge M A, Gutierrez-Puebla E, Martinez J L, et al. Chem. Mater., 2000, 12 (7): 2001--2007. [5] Juan M, Gonzalez R, Arean C O, et al. J. Chem. Soc. Dalton Trans., 1985, 10: 2155--2159. [6] O’Neill H S C, Navrotsky A. Am. Miner., 1984, 69: 733--753. [7] Carter D C, Mason T O. J. Am. Ceram. Soc., 1988, 71 (4): 213--218. [8] Dunitz J D, Orgel L E. J. Phys. Chem. Solids, 1957, 3: 318--323. [9] O’Neill H S C, Navrotsky A. Am. Miner., 1983, 68 (1--2): 181--194. [10] Yoo H I, Tuller H L. J. Am. Ceram. Soc., 1987, 70 (6): 388--392. [11] Mahmoud M H. Solid State Ionics, 2005, 176 (13--14): 1333--1336. [12] Ataouia K E, Doumercb J P, Ammara A, et al. Journal of Alloys and Compounds, 2004, 368 (1--2): 79--83. [13] Kamiyama T, Haneda K, Sato T, et al. Solid State Communication, 1992, 81 (7): 563--566. [14] Wang J, Deng T, Dai Y J. Journal of Alloys and Compounds, 2006, 419 (1--2): 155--161. [15] 王静, 邓彤, 杨欢, 等(WANG Jing, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (5): 1059--1065. [16] Wei Q M, Li J B, Chen Y J. Materials Characterization, 2001, 47 (3--4): 247--252. [17] Furuhshi H, Inagki M, Naka S, et al. J. Inorg. Nicl. Chem., 1973, 35: 3009--3014. [18] Kawade V B, Bichile G K, Jadhav K M. Materials Letters, 2000, 42 (1--2): 33--37. [19] Ladgaonkar B P, Vaingankar A S. Materials Chemistry and Physics, 1998, 56 (3): 280--283. [20] Wiles D B, Young R A. J. Appl. Cryst., 1981, 14 (2): 149--151. [21] Rietveld H M. J. Appl. Cryst., 1969, 2 (2): 65--71. [22] Gonzalez-Sandoval M P, Beesley A M, Miki-Yoshida M, et al. Journal of Alloys and Compounds, 2004, 369 (1--2): 190--194. [23] Popovic S. J. Appl. Cryst., 1973, 6 (2): 122--128. [24] Hugh S T, O’Neill C, Navrotsky A. Am. Mineral, 1983, 68 (1--2): 181--194. [25] Sattar A A. Journal of Materials Science, 2004, 39 (2): 451--455. [26] Porta P, Stone F S, Tuner R G, et al. J. Solid State Chem., 1974, 11 (2): 135--147. [27] Preudhomme J, Tarte P. Spectrochim. Acta. A, 1971, 27 (7): 961--968. [28] Kumara V R, Narasimhulua K V, Gopala N O, et al. Journal of Physics and Chemistry of Solids, 2004, 65 (7): 1367--1372. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%