研究了Bi0.5Na0.5TiO3(BNT)掺杂对BaTiO3(BT)-Nb2O5-ZnO三元系统介电性能与微结构的影响. BaTiO3陶瓷在低温端(-55℃)的电容量变化率随BNT含量的增大而单调降低, 而高温端(150℃)的变化率持续增大, 且居里温度单调递增. 掺杂1.0wt%与2.5wt% BNT的BT陶瓷满足EIA X8R特性. SEM观察表明, BaTiO3陶瓷内部由细小的基质晶粒和第二相晶粒组成, 且第二相比例随BNT含量的增加而增大. XRD分析表明, 基质晶粒为BaTiO33, 第二相晶粒为CaB2Si2O8和NaBiTi6O14. 条状第二相CaB2Si2O8和NaBiTi6O14的产生改变了BT系统的内应力结构是钛酸钡陶瓷居里温度升高以及电容量温度特性改善的原因.
The effects of Bi0.5Na0.5TiO3 (BNT) doping on the dielectric properties and microstructures of BaTiO3 (BT)-Nb2O5-ZnO ternary system were investigated. The Δ C/C25℃ values at low temperature (-55℃) decrease with increasing BNT content, but the Δ C/C25℃ values at high temperature (150℃) and the Curie temperature (Tc) show continuous enhancement. BaTiO3 ceramic doped with 1.0wt% and 2.5wt% BNT are satisfied with the EIA X8R specification. SEM indicates that the BaTiO3 ceramics are composed of fine grains and secondary phase grains. Moreover, the proportion of the secondary phase grains increases as BNT contents increase. XRD analyses prove that the fine grains are BaTiO3 and the secondary phase grains are identified to be CaB2Si2O8 and NaBiTi6O14. The formation of the strip-shaped secondary phase of CaB2Si2O8 and NaBiTi6O14 which alters the internal stress system of BaTiO3 ceramics is presumed to be the factor that shifts the Tc to higher temperature and improves the temperature characteristic of BaTiO3 ceramics.
参考文献
[1] | Satoh M, Tanaka H. High dielectric-constant dielectric ceramic composition, and its fabrication process. Int. CI: C04B 35/468, US Patent, 5,990,029, 1999-11-23. [2] Jung Y S, Na E S, Paik U, et al. Mater. Res. Bull., 2002, 37 (9): 1633--1640. [3] Sato S, Terada Y, Fujikawa Y. Manufacture method of dielectric ceramic composition. Int. CI: C04B 35/468, US Patent, 6,544,916, 2003-04-08. [4] Song Y H, Han Y H. Jpn. J. Appl. Phys., 2005, 44 (8): 6143--6147. [5] 王 升, 周晓华, 张树人, 等(WANG Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 369--374. [6] Kobayashi H, Uchida T, Sato S, et al. Dielectric ceramic composition and electronic device. Int. CI: C04B 35/468, US Patent, 6,764,976, 2002-8-23. [7] Smolensky G A, ISUPOV V A, AGRANOVSKAYA A I, et al. Sov. Phys. Solid State, 1961, 2 (11): 2651--2654. [8] SUCHANICZ J, Kusz J, Bohm H, et al. J. Euro. Ceram. Soc., 2003, 23 (10): 1559--1564. [9] Takenaka T, Nagata H. J. Euro. Ceram. Soc., 2005, 25 (12): 2693--2700. [10] Hennings D, Rosenstein G. J. Am. Ceram. Soc., 1984, 67 (4): 249--254. [11] Chazono H, Kishi H. J. Am. Ceram. Soc., 1999, 82 (10): 2689--2697. [12] Kishi H, Okino Y, Honda M, et al. Jpn. J. Appl. Phys., 1997, 36 (9): 5954--5957. [13] Armstrong T R, Buchanan R C. J. Am. Ceram. Soc., 1990, 73 (5): 1268--1273. [14] Hwang J H, Choi S K, Han Y H, Jpn. J. Appl. Phys., Part 1, 2001, 40 (9): 4952--4955. [15] Tang B, ZHANG S R, ZHOU X H. J. Mater. Sci.: Mater Electro., 2007, 18 (5): 541--545. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%