欢迎登录材料期刊网

材料期刊网

高级检索

利用烧结法制备化学计量比和高Ba含量的两组BaO-Al2O3-SiO2(BAS)系微晶玻璃, 采用等转化率法计算玻璃粉的活化能随析晶过程的变化, 利用线性回归的方法确定最概然析晶机理函数, 进而对比研究添加ZrO2和提高Ba含量对BAS系微晶玻璃析晶过程的影响. 结果表明, 4种成分的BAS系玻璃的最概然析晶机理函数均为SB(m, n)函数, 析晶过程中存在自催化的相变机制. 在化学计量比的BAS系玻璃中添加ZrO2或者提高Ba含量, 对六方钡长石的析出表现为促进作用, 并且随着温度的降低或者析晶过程的进行, 促进效果更加明显. 在高Ba含量的BAS系玻璃中添加ZrO2对六方钡长石的析出表现为抑制作用, 并且随着温度的升高抑制效果更加明显.

BaO-Al2O3-SiO2(BAS) glass-ceramics with stoichiometric and off-stoichiometric celsian composition were fabricated. Crystallization characters of two groups of BaO-Al2O3-SiO2 (BAS) glass-ceramics were investigated by differential scanning calorimetry (DSC), X-ray diffraction(XRD), isoconversional method and multiple linear regression method. The autocatalytic kinetic model (Sest\acute ak-Berggren function) was found to be the most proper description of the studied processes for all glass investigated. Doping with ZrO2 or increasing mass fraction of BaO accelerates the crystallization process of hexagonal-BaAl2Si2O8 in BAS glass-ceramics with stoichiometric celsian composition whose viscosity is high. Moreover, the lower the temperature gets, or the higher the crystallinity gets, the more obvious the accelerating effect gets. While doping with ZrO2 decelerates the crystallization process of hexagonal-BaAl2Si2O8 in BAS glass-ceramics with off-stoichiometric celsian composition whose viscosity is low. Moreover, the higher the temperature gets, the more obvious the decelerating effect gets.

参考文献

[1] Wolfram H, George B. Glass-ceramic Technology. Ohio: The American Ceramic Society, 2002. 1--4.
[2] 程金树, 李宏, 汤李缨, 等. 微晶玻璃. 北京: 化学工业出版社, 2006. 23--25.
[3] 芦玉峰, 堵永国, 肖加余, 等(LU Yu-Feng, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2005, 33 (12): 1488--1493.
[4] 芦玉峰, 堵永国, 肖加余, 等(LU Yu-Feng, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2007, 35 (2): 220--224.
[5] Cheng Z, Ozawa K, Osada M, et al. J. Am. Ceram. Soc., 2006, 89 (4): 1188--1192.
[6] Xavier Ramis J M S. J. Polym. Sci., Part A: Polym. Chem., 1997, 35 (2): 371--388.
[7] Guinesi L S, Da Roz a L, Corradini E, et al. Thermochim. Acta, 2006, 447 (2): 190--196.
[8] Yuan Z Z, Chen X D, Xu H, et al. J. Alloys Compd., 2006, 422 (1-2): 109--115.
[9] Prasad N S, Varma K B R. J. Am. Ceram. Soc., 2005, 88 (2): 357--361.
[10] 胡荣祖, 史启祯. 热分析动力学. 北京: 科学出版社, 2001. 65--111.
[11] Yinnon H, Uhlmann D R. J. Non-Cryst. Solids, 1983, 54 (3): 253--275.
[12] Francis a A, Rawlings R D, Sweeney R, et al. J. Non-Cryst. Solids, 2004, 333 (2): 187--193.
[13] Cannillo V, Carlier E, Manfredini T, et al. Composites Part A, 2006, 37 (1): 23--30.
[14] Bansal N P, Gamble E A. J. Power Sources, 2005, 147 (1-2): 107--115.
[15] Lee K N, Fox D S, Eldridge J I, et al. J. Am. Ceram. Soc., 2003, 86 (8): 1299--1306.
[16] Lin H L, Chiang R K, Li W T. J. Non-Cryst. Solids, 2005, 351 (37-39): 3044--3049.
[17] Ye F, Gu J C, Zhou Y, et al. J. Eur. Ceram. Soc., 2003, 23 (13): 2203--2209.
[18] Henderson D W. J. Non-Cryst. Solids, 1979, 30: 301--315.
[19] Gotor F J, Criado J M, Malek J. J. Am. Ceram. Soc., 2001, 84 (8): 1797--1802.
[20] Huang H, Gu L, Ozaki Y. Polym, 2006, 47 (11): 3935--3945.
[21] Hong J, Yi T, Min J, et al. Thermochim. Acta, 2006, 440 (1): 31--35.
[22] Silva D V, Ribeiro C A, Crespi M S. J. Therm. Anal. Calorim., 2003, 72 (1): 151--157.
[23] Malek J, Cernoskova E, Svejka R, et al. Thermochim. Acta, 1996, 280-281: 353--361.
[24] Corral J S M, Verduch A G. Trans. J. Br. Ceram. Soc., 1978, 77 (2): 40--44.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%