采用高真空反应蒸发法在未加热的p型Si(100)衬底上实现了非晶Er2O3高k栅介质薄膜的生长. 俄歇电子能谱证实薄膜组分符合化学剂量比. X射线衍射、反射式高能电子衍射和高分辨透射电子显微镜测量表明, 不但原位沉积的薄膜是非晶结构, 而且高真空700℃退火30min后样品仍保持了良好的非晶稳定性. 原子力显微镜检测显示高真空退火有利于改善薄膜的表面形貌. 退火后, Er2O3薄膜获得了平整的表面. 电容-电压测试得到薄膜的有效介电常数为12.6, EOT为1.4nm, 在1MV/cm时漏电流密度为8×10-4A/cm2. 这些特征表明非晶Er2O3薄膜是一种较好的高k栅介质候选材料.
High k dielectric Er2O3 were deposited on p-type Si (100) substrates by reactive evaporation using metallic Er source at room temperature in an oxygen atmosphere. The composition of the films is determined to be stoichiometric. X-ray diffraction, reflection high energy electron diffraction and high resolution transmission electron microscopy tests reveal
that the films are amorphous even after thermal annealing at 700℃. The films have very flat surface after high temperature annealing. The dielectric constant of Er2O3 films is 12.6, an effective oxide thickness of 1.4nm is achieved, with a low leakage current density of 8×10-4 A/cm2 at electric field of 1MV/cm after annealing. The obtained results indicate that the amorphous Er2O3 film is a promising candidate for high k gate dielectric in Si microelectronic devices.
参考文献
[1] | Yan Z J, Xu R, Wang Y Y, et al. Appl. Phys. Lett., 2004, 85 (1): 85--87. [2] Harris H, Choi K, Mehta N, et al. Appl. Phys. Lett., 2002, 81 (6): 1065--1067. [3] Sayan S, Nguyen N V, Ehrstein J, et al. Appl. Phys. Lett., 2005, 86 (15): 152902--1--3. [4] Zhu L Q, Fang Q, He G, et al. Nanotechnology, 2005, 16 (12): 2865--2869. [5] Klein T M, Niu D, Epling W S, et al. Appl. Phys. Lett., 1999, 75 (25): 4001--4003. [6] 王东生, 于涛, 游彪, 等(WANG Dong-Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18 (1): 229--232. [7] Hunter M E, Reed M J, El-masry N A, et al. Appl. Phys. Lett., 2000, 76 (14): 1935--1937. [8] Ioannou-Sougleridis V, Vellianitis G, Dimoulas A. J. Appl. Phys., 2003, 93 (7): 3982--3989. [9] Lippert G, Dabrowski J, Melnik V, et al. Appl. Phys. Lett., 2005, 86 (14): 042902--042904. [10] Nigro R Lo, Toro R G, Malandrino G, et al. Adv. Mater., 2003, 15 (13): 1071--1075. [11] Zhu Y Y, Chen S, Xu R, et al. Appl. Phys. Lett., 2006, 88 (16): 162909--162911. [12] Ono H, Katsumata T. Appl. Phys. Lett., 2001, 78 (13): 1832--1834. [13] Singh M P, Thakur C S, Shalini K, et al. Appl. Phys. Lett., 2003, 83 (14): 2889--2891. [14] Mikhelashvili V, Eisenstein G, Edelmann F. Appl. Phys. Lett., 2002, 80 (12): 2156--2158. [15] Mikhelashvili V, Eisenstein G, Edelmann F. J. Appl. Phys., 2001, 90 (10): 5447--5449. [16] Mikhelashvili V, Eisenstein G, Edelmann F, et al. J. Appl. Phys., 2004, 95 (2): 613--620. [17] Chen S, Zhu Y Y, et al. Appl. Phys. Lett., 2006, 88 (22): 222902--1--3. [18] Xu R, Zhu Y Y, Chen S, et al. J. Cryst. Growth, 2005, 277 (1--4): 496--501. [19] 李驰平, 王波, 宋雪梅, 等. 材料导报, 2006, 20 (2): 17--25. [20] Muller D A, Sorsch T, Moccio S, et al. Nature, 1999, 399 (6738): 758--761. [21] Dimoulas A, Vellianitis G, Travlos A, et al. J. Appl. Phys., 2002, 92 (1): 426--431. [22] He G, Liu M, Zhu L Q, et al. Surface Science, 2005, 576 (1--3): 67--75. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%